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Michel Beaudin, Gilles Picard, Geneviève Savard . . . . . . . . . . . . . . . . . . . . . . . 43

Some maths problems for the average citizen
Eugenio Roanes-Lozano, Justo Cabezas-Corchero . . . . . . . . . . . . . . . . . . . . . . . 44

Investigating Magic Squares in a Linear Algebra Course
Karsten Schmidt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Computer Algebra - the engine of transition to activity-based approach in mathe-
matics education
Elena Varbanova, Elena Shoikova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Using Computer Algebra in Mathematics for Engineers
Thomas Westermann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Omega: A Free Computer Algebra System Explorer for Online Education
Michael Xue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Session 2: Computer Algebra for Dynamical Systems and Celestial Me-
chanics 55

On necessary conditions of integrability of degenerated planar ODE systems in the
parameter space
Alexander Bruno, Victor Edneral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

On using computer algebra systems for analysis of rigid body dynamics
Larisa Burlakova, Valentin Irtegov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Orbital Reversibility of Dynamical Systems
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A Gröbner Bases Method for Complementary Sequences
Christos Koukouvinos, Dimitris E. Simos, Zafeirakis Zafeirakopoulos . . . . . . . . . . . . 255

Goodness-of-fit testing in Ising Models
Abraham Mart́ın del Campo, Caroline Uhler . . . . . . . . . . . . . . . . . . . . . . . . . 260

Monomial ideal methods for hierarchical statistical models
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Prologue





Prologue

Dear colleagues,

It is our pleasure to welcome you to Málaga for ACA 2013 (Applications of Computer Algebra).

The ACA conference series is devoted to promoting all manner of computer algebra applications, and
encouraging the interaction of developers of computer algebra systems and packages with researchers and
users (including scientists, engineers, educators, etc.). Topics include, but are not limited to, computer
algebra in the sciences, engineering, medicine, pure and applied mathematics, education and computer
science.

ACA Conferences are run in different Special Sessions. In ACA 2013, the following 12 Special Sessions
have been accepted:

• Session 0: General Session on Computer Algebra

Organizers: José Luis Galán Garćıa, Gilles Picard.

• Session 1: Computer Algebra in Education

Organizers: Michel Beaudin, Michael Wester, José Luis Galán Garćıa, Alkis Akritas, Bill Pletsch,
Elena Varbanova.

• Session 2: Computer Algebra for Dynamical Systems and Celestial Mechanics

Organizers: Victor Edneral, Aleksandr Myllari, Valery Romanovski, Nikolay Vassiliev.

• Session 3: Algebraic and Algorithmic Aspects of Differential and Integral Operators Session

Organizers: Moulay Barkatou, Thomas Cluzeau, Georg Regensburger, Markus Rosenkranz.

• Session 4: Computer Algebra in Coding Theory and Cryptography

Organizers: Ilias Kotsireas, Edgar Mart́ınez-Moro.

• Session 5: Nonstandard Applications of Computer Algebra

Organizers: Francisco Botana, Antonio Hernando, Eugenio Roanes-Lozano, Michael Wester.

• Session 6: Arithmetic of Algebraic Curves

Organizers: Jean-Marc Couveignes, Nicola Pagani, Tony Shaska.

• Session 7: Applications and Libraries development in DERIVE and TI-NSPIRE

Organizers: José Luis Galán Garćıa, Pedro Rodŕıguez Cielos, Gabriel Aguilera Venegas, Josef Böhm.

• Session 8: Computer Algebra in Algebraic Statistics

Organizers: Hugo Maruri-Aguilar, Eduardo Sáenz-de-Cabezón, Henry P. Wynn.

• Session 9: Computer algebra, quantum computing and quantum information processing

Organizers: Vladimir Gerdt, Alexander Prokopenya, Yoshia Uwano.

• Session 10: Computer algebra in algebraic topology and its applications

Organizers: Aniceto Murillo, Pedro Real, Eduardo Sáenz-de-Cabezón.

• Session 11: Symbolic and Numerical Methods: Practical Applications

Organizers: José Manuel González Vida, Tomás Morales de Luna, Maŕıa Luz Muñoz Ruiz.

From the very beginning, ACA Conferences have been a very important meeting point for professionals
in the use of Computer Algebra in different fields. In this occasion, ACA 2013 has joined 109 delegates
from 25 different countries and a total of 124 participants.

105 contributions have been finally accepted by session organizers. This proceedings book contents
the extended abstracts of these 105 contributions together with two more extended abstracts from the
Plenary Lectures.
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10 years of sequence autocorrelation

Ilias S. Kotsireas
Wilfrid Laurier University (Canada)

ikotsire@wlu.ca

Abstract

The autocorrelation functions (periodic and aperiodic) associated to finite sequences have
been the object of intense study in Discrete Mathematics and Combinatorics. Finite sequences
whose autocorrelation functions sum to a constant are called complementary sequences. The
search for complementary sequences is a very challenging problem from the theoretical and
algorithmic point of view. In our work for the past 10 years we have developed with our
collaborators various algorithmic techniques (and significantly improved existing methods)
to search efficiently for complementary sequences. An important aspect of complementary
sequences is the fact that they can be used to construct D-optimal, Hadamard and weighing
matrices, among many other combinatorial objects. I plan to summarize our achievements
with a special focus on recent successes [2], [3], [6], [7] using cyclotomy-based methods and
metaheuristics methods. I also plan to point out important connections of specific kinds of
complementary sequences with Coding Theory [4]. Complementary sequences problems can
be formulated as systems of polynomial equations (with typically a few hundred variables)
that exhibit symmetries. Therefore the Symbolic Computation methods of [1] come into play.
High-performance computing (also known un supercomputing) is another important ingredient
of algorithms pertaining to the search for complementary sequences. The interested reader
can also consult my recent chapter [5] for more information, detailed examples and extensive
bibliography on the these topics.

Keywords
autocorrelation, complementary sequences, Hadamard matrices, weighing matrices
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Some ideas about the research in computational mathematics:

a perspective from the middle of the life and the academic life

(Plenary Talk)

Eugenio Roanes-Lozano
Instituto de Matemática Interdisciplinar (IMI),

Departamento de Álgebra, Facultad de Educación,
Universidad Complutense de Madrid, E-28040 Madrid (Spain)

eroanes@mat.ucm.es

Abstract

The author gives an overview of his education and his experience in applied computational
mathematics research.

Keywords
Effective computations, Railway interlocking systems, Gröbner bases, Simulation, Motivation.

1 Extended Abstract

1.1 ACA conference series

I have attended all ACA conferences except ACA’2005 and ACA’2010 and I organized ACA’1999
at El Escorial (Spain).

In 2003 I was invited by Prof. Hoon Hong to be the banquet speaker at ACA’2003 (Raleigh,
NC).

Now, ten years older, Prof. José Luis Galán has invited me to address you again as plenary
speaker. I would like to thank Prof. Galán and the different committees of ACA’2013 for this
opportunity.

1.2 My mathematical education and the outside world

I’m the son of a mathematician, Eugenio Roanes-Maćıas (an algebrist whose Ph.D. advisor was
Prof. Pedro Abellanas, a disciple of Prof. Wolfgang Krull). He dedicated a good part of his time
to my mathematical education since I was a young boy.

I studied mathematics at the Universidad Complutense de Madrid. I never used a computer
while at university (1979-1984). Just to mention some of my teachers, I enjoyed discovering real
analysis with Prof. Baldomero Rubio, linear geometry with Prof. Javier Etayo and differential
equations and control theory with Prof. Miguel de Guzmán. And a crossroad in my academic life
was discovering axiomatic-systems with Prof. Maŕıa Paz Bujanda.

But I also discovered some deceptions regarding mathematic. The biggest one was to learn in
a post-graduate course taught by Prof. Luis Laita (my other master), the existence of paradoxes
and Gödel’s incompleteness theorem. The beautiful mathematical building I was beginning to visit
was not absolutely perfect...

The other one had happened earlier, when I studied algebraic geometry during my third year
at university. The theory was perfectly developed, we studied very long and detailed proofs, but
the examples presented to us were trivial (normally only lines, planes, conics and quadrics were
used, and the applications of the results to the examples were many times obvious or trivial)
and apparently with no application. I then thought about leaving my studies and switching to
mechanical engineering.
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1.3 The outside world... and crisis

So far I had defended mathematics from questions like:

“Why are you going to study mathematics for? Become a physician, like your grand-
father. That’s useful.”

or attacks like:

“Are mathematics useful? I don’t have a clue of any use in my everyday life...”

I answered with ideas that I had heard to my father, like

“Mathematics is behind everything: from technological items like a car, a building, a
bridge,... to arts like music, painting,...”

(ideas close to those shown in the beautiful Disney’s film “Donald in Mathmaticland”, or:

“You can study a theoretical subject like commutative algebra or theoretical physics just
for the pleasure of discovering.”

But I began to doubt... Were “those mathematics” my real passion?

1.4 Effective computations

I started my thesis in commutative algebra with my father as advisor not very enthusiastically.
But all that changed after beginning to work with the computer algebra system REDUCE in 1987
and after attending a post-graduate course taught by Prof. Franz Winkler (whose advisor was
Prof. Bruno Buchberger) about Gröbner bases. As a consequence, the last part of my Ph.D. thesis
included effective computations, what was very exciting to me. Moreover, Prof. Tomás Recio
introduced me to mechanical theorem proving in geometry in 1988.

The possibility of performing effective computations in Euclidean geometry, algebraic geometry
and commutative algebra changed my attitude towards these disciplines: they became attractive
to me again!!! I was so energetic that I prepared a second thesis in computer science (the Ph.D.
advisors were my father and, curiously, Prof. Manuel Abellanas, son of Prof. Pedro Abellanas).

Afterwards, I begun working with Prof. Luis Laita in the applications of computer algebra to
logic and artificial intelligence, a very long and fruitful cooperation.

1.5 Hobbies and research

Railways (together with cars) have been my passion since I was a child. Visiting the railway
station just to watch trains has always been at pleasure for me. In 1981, I obtained the Spanish
Philips’1 “Premio Holanda” (a young researcher award) for a theoretical proposal entitled “Block-
system with mobile sections”, where some of the key ideas of the modern “European Train Control
System” (ETCS) where sketched.

Of all my papers, my favourite one is probably the one adapting Gröbner bases to decision
making in a railway interlocking system2. In fact this has been my most active line of research:
we have developed matrix [1], Gröbner bases [2, 3], logic [4] and logic-algebraic [5] models. These
models, although implemented, have never been applied to real life because it is very difficult (and
expensive) to have safety-critical applications approved.

I’ll give in this talk an overview of these approaches to decision making in a rail-
way interlocking, most of them presented at the “Applications of Computer Algebra
(ACA)” conference series.

Curiously, although not directly applied, these works have been the key to most of my present
lines of research and its funding (from both the Government of Spain and also private funding).
Regarding the latter, I specifically note:

• Passenger movement simulation within an airport (Spanish Airport Authority, 2003) [6] and
railway traffic simulation [7].

1The big Dutch electronics company.
2Railway interlocking systems are apparatuses that prevent conflicting movements of trains through an arrange-

ment of tracks. A railway interlocking system takes into consideration the position of the switches of the turnouts
and does not allow trains to be given clear signals unless the routes to be used by the trains do not intersect.
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• Routing and timing of trains in the complex Spanish railway network (Spanish Railways
Foundation, 2010) [8].

• Costs and emissions of trains in the complex Spanish railway network (Spanish Railways
Foundation, 2011) [9].

Many of the railways-related works have been developed in cooperation with Dr. Alberto Garćıa-
Álvarez, Executive Director of Passengers for Renfe (Spanish Railways).

My computer algebra applied works were also the key to my involvement in the organization
of the conferences “Applications of Computer Algebra (ACA)” and “Artificial Intelligence and
Symbolic Computation (AISC)”, thanks to the kindness and dedication of Prof. Stanly Steinberg
and Prof. Michael Wester in the first case and Prof. Jacques Calmet and Prof. John Campbell in
the second case.

1.6 The usefulness of a research

One of the favourite examples of my father (originally a physicist) when asked about the utility of
theoretical “useless” mathematics were geometries in dimension greater than 3 and the works of
Gauss, Lobachevski and others about non-Euclidean geometries (all apparently useless academic
exercises) and their ultimate application to relativity theory by Minkowski.

Obviously I’m not comparing my works with those of geniuses like Gauss, Lobachevski or
Minkowski, but I’ve tried to emphasize in the previous section that such situations also arise
in computational mathematics, not only in “pure mathematics” and that they can happen at
“normal” levels.

1.7 Conclusions

Summarizing, as my advise to young researchers in computational mathematics:

• Working in what you love is, by default, fruitful.

• Using techniques from a certain field in a very different field is usually very innovative and
fruitful.

• Never abandon a fruitful research line that you like for its apparent lack of direct application:
it could have a future one.

• It is worthwhile making an effort to meet people in one’s field and talking to them (via
conferences, visits, etc.). Actually organizing a meeting also allows one to meet a lot of
people.
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A New Criterion for the Existence of Real Zeros of

Polynomial Systems

Jin-San Cheng
KLMM, Institute of Systems Science, AMSS, CAS (China)

jcheng@amss.ac.cn

Abstract

In both theory and practice, dealing with multiple zeros and clusters of zeroes or com-
ponents with positive dimension of multivariate polynomial system is a challenging problem.
We give a theoretical result to the problem. In fact, the idea of the main result comes from
computer algebra systems. Based on some results related to computer algebra, we prove the
main result (Theorem 1). Theorem 2 can be used with constructing roadmaps of a connected
real component of a polynomial system. The symbolic computation based results may be a
guide for numeric computation.

Denote Σ = {f1, . . . , fm} ⊂ R[x1, . . . , xn], f =
∑m

i=1 f2
i , Sf = {c ∈ C : f − c is singular},

Σr = { ∂f
∂x1

, . . . , ∂f
∂xn

, f − r}, where R, C are fields of real and complex numbers respectively.

Definition 1 We say a point P is attracted to a component Q of VR(Σr̄)(r̄ ∈ Sf) when
r → r̄ (simply for P is attracted to a component Q without misunderstanding) if there exists
a path C from P to a point P ′ ∈ Q such that the value of r = f at point R ∈ C decreases to r̄
when R moves from P to P ′.

We give a new criterion for numerically deciding whether a real point P ∈ Rn is attracted
to a real zero (regular, multiple or a point on a component with positive dimension) of a
polynomial system.

Theorem 1 Let Σ = {f1, . . . , fm} ⊂ R[x1, . . . , xn]. Then there exists a real number r0 > 0
such that for any P ∈ Rn, if

f(P ) =

m∑

i=1

f2
i (P ) < r0,

then P is attracted to a component of VR(Σ) ̸= ∅.
Given two points P, Q ∈ Rn that are attracted to some real zeros of Σ, we give a criterion

to judge whether both P, Q are attracted to the same real connected component of Σ.

Theorem 2 Let Σ = {f1, . . . , fm} ⊂ R[x1, . . . , xn]. Let P1, P2 ∈ Rn be two points and
f(Pi) < r0(i = 1, 2), where f =

∑m
i=1 f2

i . They are both attracted to the same component of
VR(Σ) if and only if there exists a path C(P1P2) such that for any point P on C(P1P2),

f(P ) ≤ max{f(P1), f(P2)}.

Keywords
polynomial system, real zeros, certified numerical solving
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Planar arrangements and singular algebraic surfaces.

Juan Garćıa Escudero
Universidad de Oviedo (Spain)

jjge@uniovi.es

Abstract

Simplicial arrangements of lines have been used in the past decades to generate substitution
tilings. They contain simple arrangements with a large number of triangular cells. Algebraic
surfaces with many singularities can be constructed with polynomials based on the arrange-
ments, which are also related to a class of bivariate polynomials with complex coefficients. The
existence of a high number of singularities is due to the fact that the polynomials have many
critical points with few critical values, which are obtained with Mathematica computational
tool. A degree-15 algebraic surface with many A7 singularities is constructed with the help of
Belyi polynomials. The Singular computer algebra system is used in order to get an explicit
expression for the surface.

Keywords
Algebraic Surfaces, Arrangements, Singularities.

1 Introduction

Simplicial arrangements of d lines were used in [12] for the derivation of substitution tilings with
odd symmetries greater than five and not divisible by three. The constructions were later extended,
first for d multiple by three, and then for d even, with the purpose of generating tilings with all
the symmetries ([4], and references within). In [5] it is shown that simplicial arrangements, which
we denote by S2d

D and S2d
C , contain the simple arrangements Σd1 and Σd2 that can be used for the

generation of algebraic surfaces with many real nodes. On the basis of the construction of real
variants of Chmutov surfaces [2, 1] are Σd1, which already appeared in [8]. Of particular interest in
singularity theory are Σd2, for d divisible by three, because the associated algebraic surfaces have
more real nodes than those obtained with Σd1.

In this work we first study several properties of the arrangements such as the existence of Gallai
triangles or the problem of stretchability and then we discuss their use in the context of singular
algebraic surfaces. In [8], simplicial arrangements of type SdD were used to analyze the problem of
the existence of Gallai triangles. The authors showed that there are no Gallai triangles in SdD for d
higher than 4 with d not 0 (mod 9). We treat this question in Section 2 by studying the simplicial
arrangements SdC for d = 0 (mod 9). In Section 3 it is shown that by adding certain pseudolines to
Σd2, we can get non-stretchable simple arrangements. Simplicial pseudoline arrangements appear
also in the context of substitution tilings. They contain the prototiles and substitution rules of
the classes of random tilings obtained in [3]. In Section 4 we consider the relationship between the
simple arrangements Σd2 and the existence of algebraic surfaces of degree d with many singularities.
We give an explicit construction of a degree-15 surface with a high number of real singularities of
type A7. Mathematica [14] and SINGULAR [9] computing tools are used.

2 Simplicial arrangements of lines

2.1 The arrangements Sd
C

Let A be an arrangement of d lines and let tj(A) denote the number of vertices of multiplicity
(number of lines of A incident to a vertex) j. If all the bounded cells are triangles then we say
that A is simplicial. If tj(A) = 0 for j higher than 2, then it is said to be simple. The following
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question is attributed in [8] to Erdös. Let us suppose that the arrangement has tj(A) = 0 for j
higher than 3. Then does there exist a Gallai triangle, i.e. three lines from A such that their three
intersection points have multiplicity 2, or not?.

We denote by P (0) a fixed point in the circle with center C. For α = mπ/2d, d ∈ Z,m ∈ Z2d,
let P (α) be the point obtained by rotating P (0) around C, with angle α.

The lines in the arrangements are defined by (m,n) if they pass through the points P (mπ/2d)
and P (nπ/2d). The simplicial arrangement SdC , with cyclic symmetry for d = 3q, consists in the
straight lines L2n, defined by (2n, d+ 4− 4n) ∈ Z2d × Z2d.

Lemma 1. The lines Li, Lj , Lk in SdC are concurrent if and only if i+ j + k = 4 (mod 2d).

Proof. Two lines (x1, y1), (x2, y2) are perpendicular if and only if x2 − x1 + y2 − y1 = d (mod
2d). L2n is perpendicular to the lines (d + 3 − n + m, d + 1 − n −m),m ∈ Z2d. Given n1, n2 we
look for n3 such that L2n3

⊥(2n1, 2n2). In that case, the lines L2n1
, L2n2

, L2n3
are the altitudes

of the triangle P (n1π/d)P (n2π/d)P (n3π/d) and hence they meet at one point. The solution of
2n1 = d+ 3− n3 +m, 2n2 = d+ 1− n3 −m is m = n1 − n2 − 1 and therefore 2n1 + 2n2 + 2n3 = 4
(mod 2d).

Lemma 2. For d=0 (mod 9) the arrangements SdC have no Gallai triangles.

Proof. The multiplicity of Li ∩ Lj is 2 when 2i + j = 4 or 2j + i = 4 (mod 2d). The Gallai
triangles are formed by Li, Lj , Lk when 2i+ j = 2j + k = 2k + i = 4 (mod 2d). In order to find a
Gallai triangle for d = 3q we have to look for m ∈ Z such that 3i− 4 = 2mq, which is not possible
when q = 3 (mod 3).

2.2 Sd
C and substitution tilings

The prototiles (minimal set of tiles such that each tile in the tiling is congruent to one of those
in the prototile set) for a wide class of tilings can be obtained from SdC [4]. A substitution or
inflation rule determines how to replace each prototile with a patch of tiles. Iteration of the
substitution rules gives, in the limit, a substitution tiling. The possible patches of tiles necessary
for the derivation of the rules are included in the simplicial arrangements. However, in order to
get the inflation rules for all the possible inflation factors a different type of simplicial arrangement
is needed. For instance in the case d = 9 the arrangement S9

D, with dihedral symmetry, is formed
by (2n, 9 − 4n) ∈ Z18 × Z18. It contains three of the seven prototiles appearing in S9

C , and it is

possible to get substitution tilings with them [6]. For any positive integer q, S3q
D can be obtained

by rotations of the lines in S3q
C , as indicated at the end of section 4.1.

3 Simple and simplicial pseudoline arrangements

3.1 Non-stretchable simple pseudoline arrangements

The arrangement Σd2 is formed by the lines L2n+1 defined by (2n+ 1, d+ 2− 4n) ∈ Z2d × Z2d.

Lemma 3. The arrangements Σd2 are simple.

Proof. L2n+1 is perpendicular to the lines (d+2−n+m, d+1−n−m),m ∈ Z2d. Now we look for
n3 such that L2n3+1⊥(2n1 +1, 2n2 +1). We have 2n1 +1 = d+2−n3 +m, 2n2 +1 = d+1−n3−m,
therefore 2n1 + 2n2 + 2n3 = 1 (mod 2d) and 2m+ 1 = 2(n1 − n2) which is not possible, hence all
the points Li ∩ Lj in Σd2 have multiplicity 2.

We can use Σd2 for the construction of non-stretchable simple arrangements of pseudolines.
According to the Pappus-Pascal theorem, if the points A1, A2, A3 are collinear, and the points
B1, B2, B3 are collinear, and if Ci is the intersection-point of the lines AjBk and AkBj for i 6= j 6=
k 6= i then C1, C2, C3 are collinear.

We add three pseudolines Pk, k = 1, 2, 3 to Σ12
2 in order to get a non-stretchable simple arrange-

ment of 15 pseudolines S15. The pseudolines are defined with 14-tuples which give the consecutive
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intersections on lines Lk, denoted by k, and the other pseudolines: P1 : (P3, 13, 11, 15, 9, 17, 7, 5, 19,
P2, 21, 3, 23, 1);P2 : (15, 17, 19, 13, P3, 11, 21, 23, 9, 1, 7, 3, 5, P1);P3 : (P2, 21, 19, 23, 17, 1, 15, 13, 3, P1,
5, 11, 9, 7). The intersections L1 ∩ P1, L1 ∩ P2, L1 ∩ L11, L11 ∩ L17, L17 ∩ P3, L17 ∩ P1 are denoted
by A1, A2, A3, B1, B2, B3 respectively.

Assume that we found an arrangement of straight lines T15 isomorphic to S15; we shall denote
the vertices of T15 by the same symbols as those of S15. Let C2 denote the intersection of the
lines A3B1 and A1B3 in T15 (or the corresponding pseudolines in S15). The intersection point
of A2B1 and A1B2 must be in the zone between the two lines passing through A2 and the line
A3B1. On the other hand C1 must be below the line A1B3C2. But C2, C1, C3 can not be collinear,
which contradicts the Pappus-Pascal theorem. This means that the arrangement is non-stretchable.
Analogous arguments can be applied to other arrangements with 3q pseudolines constructed in a
similar way.

3.2 Simplicial pseudoline arrangements and substitution tilings

In [3] several types of random substitution tilings were generated. The prototiles and inflation rules
can be obtained from simplicial pseudoline arrangements. Nine pseudolines are necessary for the
arrangement corresponding to the hexagonal tilings, which has three triangular prototiles and two
types of substitution rules. For octagonal tilings the arrangement has ten pseudolines containing
four prototiles. There are also two different substitution rules which may be combined in order to
obtain random tilings.

4 Singular algebraic surfaces

4.1 Bivariate polynomials associated with the simple arrangements Σd
2

For d = 3q, q = 1, 2, 3, ..., a simple arrangement of the type Σd2 can be described by means of the
lines Lν,d(x, y) = 0, ν = 0, 1, ..., d− 1 where

Lν,d(x, y) := −y − (cos
(6ν + 1)π

3d
− x)tan

(6ν + 1)π

6d
− sin

(6ν + 1)π

3d
(1)

We define polynomials based on Σ3q
2 as

JC3q(x, y) := 3
1−(−1)q

4 (−1)b
q+3
2 c

3q−1∏

ν=0

Lν,3q(x, y) ∈ R[x, y] (2)

They have only three different critical values: 0, -1, 8. We have S2d
C = Σd2 ∪ SdC and the number

of maxima with critical value 8 is the number of triples (i, j, k) such that Li, Lj , Lk in SdC are
concurrent [5] . On the other hand the minima are located inside the triangular cells of Σd2, and
the points with critical value 0 are in the intersections of two lines in Σd2. In order to simplify the
expressions for the polynomials we can use the following

Lemma 4. The polynomials JCd (x, y), expressed in the variables u = x + iy, v = u∗ = x − iy,
have the form JCd (u, v) = −1 + jCd (u, v) + jC∗d (u, v), with jCd (0, 0) = 0.

Proof. In terms of the new variables, the lines in eq.(1) have the form Lν,d(u, v) = aν,du +
a∗ν,dv + bν,d = 0, where

aν,d =
1

2
(tan

νπ

6d
+ i), bν,d = − sinνπ2d

cosνπ6d
(3)

We have L1,d(u, v)L2,d(u, v) = b1b2 + jC2 (u, v) + jC∗2 (u, v) and, by induction on d,

d−1∏

ν=0

Lν,d(u, v) =

d−1∏

ν=0

bν,d + jCd (u, v) + jC∗d (u, v) (4)
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Now we want to prove that 3
1−(−1)q

4 (−1)b
q+3
2 c
∏3q−1
ν=0 bν,3q = −1. For q = 1, 2, 3...

3q−1∏

ν=0

sin
(6ν + 1)π

6q
= (−1)q(

q−1∏

ν=0

sin
(6ν + 1)π

6q
)3 = (−1)q2−3qi−3qei

(2−3q)π
2 (

q−1∏

ν=0

(ei
(6ν+1)π

3q − 1))3 (5)

If zk denotes the roots of P (z) = (z+1)q−eiπ3 , then
∏q−1
ν=0(ei

(6ν+1)π
3q −1) =

∏q−1
ν=0 zk = (−1)q(1−eiπ3 ),

therefore
3q−1∏

ν=0

sin
(6ν + 1)π

6q
=

(−1)q

23q
(6)

The result of the lemma follows if we have in mind

3q−1∏

ν=0

cos
(6ν + 1)π

18q
= 2−3qei

(2−9q)π
6

3q−1∏

ν=0

(ei
(6ν+1)π

9q + 1) =
(−1)b

q+1
2 c3

1−(−1)q

4

23q
(7)

where we have used the products of the roots of P (z) = (z − 1)3q − eiπ3 .

By applying eq.(7) we see also that the polynomial in eq.(2) corresponds to τ = 0 in J3q(x, y, τ) :=

−∏3q−1
ν=0 Mν,q(x, y, τ), where

Mν,q(x, y, τ) := xsin(
(6ν + 1)π

18q
+ τ)− ycos(

(6ν + 1)π

18q
+ τ)− 2sin(

(6ν + 1)π

6q
+ τ) (8)

For certain fixed values of τ , the set of lines Mν,q(x, y, τ) = 0, ν = 0, 1, ...3q − 1, produces ar-

rangements equivalent to Σ3q
1 ,Σ

3q
2 , S

3q
D , S

3q
C (see [6] for some examples). The so-called folding

polynomials, associated with simple arrangements Σ3q
1 having one less triangle than Σ3q

2 , appear
for τ = 4π

3q . As we have mentioned in Sec.2, the simplicial arrangements S3q
D are necessary in order

to get the inflation rules for the substitution tilings with the prototiles appearing in S3q
C , whereas

they contain enough information for the derivation of some tilings with less prototiles [6].

4.2 A degree-15 surface having many A7-singularities.

The polynomial in Lemma 4 for d = 15 is

jC15(u, v) = (50− 125b)u3 − (15 + 125b)u6 − 75bu9 − 15bu12 − bu15 +
75

2
uv − (225− 750b)u4v

+(15 + 525b)u7v + 165bu10v + 15bu13v − 225u2v2 + (315− 1575b)u5v2 − 675bu8v2 − 90bu11v2

+525u3v3 − (140− 1400b)u6v3 + 275bu9v3 − 525u4v4 − 450bu7v4 + 189u5v5,

with b = e−i
π
3 . An Aj-singularity on a surface has the local equation zj+1 ± x2 ± y2 = 0. The

real polynomial JC15(x, y), which has coefficients in the algebraic number field Q(
√

3), has one non
degenerated minimum with critical value −1 inside each of the 61 triangles in Σ15

2 and its critical
points with critical value 0 correspond to the

(
15
2

)
points of intersection of the lines in Σ15

2 . On
the other hand the Chebyshev polynomial (JC15(z, 0) + 1)/4 has seven critical points with critical
value 0 and also seven points with critical value 1. The surface JC15(x, y)+(JC15(z, 0)+1)/4 = 0 has
7x
(
15
2

)
+61x7=1162 real A1−singularities, namely, seven more than the real variant of the Chmutov

surface with the same degree [1]. This result can be checked also by employing the computational
algebra system SINGULAR as in [7].

In [11, 7] Belyi polynomials were used with the purpose of obtaining hypersurfaces with many
Aj-singularities. Now we construct a degree-15 surface having many A7-singularities. It has the
affine equation JC15(x, y)+(B7

15(z)+1)/2 = 0, where B7
15(z) is a Belyi polynomial having two critical

points with multiplicity 7. We define B7
15(z) in such a way that

dB7
15(z)
dz = (z − a)7(z − b)7, with

B7
15(a) = 1, B7

15(b) = −1. We can get an explicit expression for it by using Groebner basis, which
in this case has two elements GI1, GI2. By using SINGULAR we obtain that GI1 = GI1(b), GI2 =
GI2(a, b) have degrees 225 and 211. A factor of GI1 is g(z) = −6435 + 2048b15. If we take the
real root of g(z), then a = −b and we find a solution for B7

15(z) with real coefficients. The surface
JC15(x, y) + (B7

15(z) + 1)/2 = 0, where the normalized Belyi polynomial is
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1

26357760
(13178880− 211/15313/1571514/1519305z + 21/533/57154/5180180z3

−31/314302/3648648z5 + 22/1531/157158/153088800z7 − 23/534/57152/51601600z9

+21/1538/157154/153144960z11 − 28/1534/157152/151774080z13 + 878592z15),

has
(
15
2

)
+61=166 real singularities of type A7. This surface has one more A7-singularity than the

one studied in [11].

Proposition 5. If µAj (d) denotes the maximum possible number of Aj-singularities on an
algebraic surface of degree d, then µA7

(15) ≥ 166.

In order to improve the known lower bounds for µAj (d), simple arrangements containing the
maximum possible number of triangles can be of interest. The following is a maximal simple
arrangement with 7 lines and 11 triangles: (1, 5), (1, 7), (2, 10), (4, 10), (4, 12), (7, 13),
(11, 13) ∈ Z14 × Z14. A maximal arrangement with 15 lines and 65 triangles is: (1 + 9n, 24 +
9n), (3 + 9n, 16 + 9n), (6 + 9n, 25 + 9n) ∈ Z45 × Z45, n = 0, 1, 2, 3, 4 (according to [10] the first
one with 65 triangles was obtained in [13]). However, these particular maximal arrangements can
not be used to improve the known lower bounds, because the corresponding polynomials do not
have the same extreme values in all the critical points with critical value of the same sign. The
results presented in this work suggest that if the cells appearing in the arrangements are prototiles
of substitution tilings, then the polynomials which consist of the lines in the arrangements have
few critical values. The construction of surfaces with many singularities can be based on such
polynomials.
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Abstract

Gröbner and Gröbner-Shirshov bases theories are generating increasing interest because of
its usefulness in providing computational tools and in giving algebraical structures which are
applicable to a wide range of problems in mathematics, science, engineering, and computer
science. In particular, Gröbner and Gröbner-Shirshov bases theories are powerful tools to
deal with the normal form, word problem, embedding problem, extensions of algebras, Hilbert
series, etc. The true significance of Gröbner-Shirshov bases is the fact that they can be
computed.

Gröbner-Shirshov basis and normal form of the elements were already found for the Coxeter
groups of type An, Bn and Dn in [1]. They also proposed a conjecture for the general form
of Gröbner-Shirshov bases for all Coxeter groups. In [2], the example was given to show that
the conjecture is not true in general. The Gröbner-Shirshov bases of the other finite Coxeter
groups are given in [3] and [4]. This paper is the first example of finding Gröbner-Shirshov
bases for an infinite Coxeter group, defined by generators and defining relations.

The main purpose of this paper is to find a Gröbner-Shirshov basis and as an application
classify all reduced words for the affine Weyl group Ãn. The strategy for solving the problem
is as follows:

Even though Gröbner bases algorithms implemented in Computer Algebra systems, there
is no good Computer Algebra package to compute Gröbner-Shirshov bases. Because of non-
commutative structure, it is not easy to find Gröbner-Shirshov bases. We wrote a program in
Mathematica to find Gröbner-Shirshov basis of Ãn for small n’s. Then we generalize this set
to any positive integer n, called it R′. After that using the algorithm of elimination of leading
words with respect to the polynomials in R′, all the words in the group Ãn are reduced to the
explicit classes of words for small n’s with help of Mathematica. As before, we also generalize
this reduced set to any positive integer n. Then using combinatorial techniques, we compute
the number of all reduced words with respect to these classes by means of a generating function.
This generating function turns out to be same with the well known Poincaré polynomial of
the affine Weyl group Ãn. Therefore, by the Composition-Diamond Lemma the functions in
R′ form a Gröbner-Shirshov basis for the affine Weyl group Ãn. Furthermore, one can easily
see that this basis is in fact a reduced Gröbner-Shirshov basis.

Keywords
Affine Weyl Groups, Gröbner-Shirshov Basis, Composition-Diamond Lemma, q-binomials
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CAS: A Tool for Improving Autonomous Work
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Abstract

The EHEA proposes a student-centered teaching model. Therefore, it seems necessary to
actively involve the students in the teaching-learning process. Increasing the active participa-
tion of the students is not always easy in mathematical topics, since, when the students just
enter the University, their ability to carry out autonomous mathematical work is scarce.

In this paper we present some experiences related with the use of Computer Algebra
Systems (CAS). All the experiences are designed in order to develop some mathematical
competencies and mainly self-learning, the use of technology and team-work. The experiences
include some teachers’ proposals including: small projects to be executed in small groups,
participation in competitions, the design of different CAS-Toolboxes, etc.

The results obtained in the experiences, carried out with different groups of students from
different engineering studies at different universities, makes us slightly optimistic about the
educational value of the model.

Keywords
Autonomous work, Computer Algebra Systems, Engineering studies, Participation in

competitions, Small projects, Toolboxes
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Abstract

It seems that teaching and assessment are two independent aspects of the educational
process. At least that is the trend in the past years. While teaching is left almost entirely to
classroom teachers, assessment is mostly a matter of school districts and governments.

Teachers teach with the support of textbooks and teaching activities, and assessment is
made mostly with tests and examinations.

In an educational context, assessment has always been attached to the process of grading,
and test, exams or questionnaires are the main assessment tool. But currently, there is an
overestimation of this tool, as some journalist points out in the next quote:

Tests have always been a part of teaching, traditionally used as just one means
of evaluating students’ progress along the long, curving path of learning as well
as a means of documenting their outcomes at the end of a teaching cycle. What’s
different in today’s test-obsessed educational culture is the increasing frequency and
prevalence of high-stakes exams as a primary tool of assessment and the decreasing
autonomy teachers have over what skills and knowledge get measured and how.
http://www.lcsun-news.com/las cruces-opinion/ci 22859295/their-view-

educational-testing-new-march-madness (recovered March 30, 2013).

Besides, assessment always (or almost always) has been on students performance, knowledge
and skills. For instance take a look to what the American Psychology Association says about
tests:

Today, many school districts are mandating tests to measure student performance
and to hold individual schools and school systems accountable for that performance.
Knowing if and what students are learning is important. Test results give classroom
teachers important information on how well individual students are learning and
provide feedback to the teachers themselves on their teaching methods and curricu-
lum materials. It is important to remember, however, that no test is valid for all pur-
poses. Indeed, tests vary in their intended uses and in their ability to provide mean-
ingful assessments of student learning. Therefore, while the goal of using large-scale
testing to measure and improve student and school system performance is laud-
able, it is also critical that such tests are sound, are scored properly, and are used
appropriately. http://www.apa.org/pubs/info/brochures/testing.aspx (recov-
ered March 30, 2013).

This regarding of tests as the one and only assessment tool is affecting the way and goal of
teaching in basic education, as one high school teacher in Slovenia commented in a Mathe-
matics Education Course given in Lubljana: “Yes, this methodology of learning mathematics,
doing mathematics is alright, but I find it hard to implement here in Slovenia because that way
of teaching is slow and takes time, and we have a very heavy curriculum and our students must
score well in ‘matura’ (state tests), so the best we can do is to prepare pupils for ‘matura’ ”

In the USA, for instance, high stake testing is becoming a nuisance for students, teachers
and school authorities. For instance, it is relevant to take a look to the webpage of The
National Center for Fair and Open Testing.

One of the aspects of this is the growing cases of cheating in tests, the more relevant case
being the one of Atlanta:
http://www.fairtest.org/2013-Cheating-Report-PressRelease (Recovered March 30, 2013).
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The other one is how low scores in standardized testing is affecting teachers and school per-
formance and financial bonuses (http://www.fairtest.org/k-12/teachers, recovered March
30, 2013).

The reaction to this kind of problems is an increasing reject of high stake tests by teachers,
parents and administrators (http://www.fairtest.org/k-12/high%20stakes, recovered 30
March, 2013).

And in many countries, PISA scores, a mere indicator as how is the state of education, is
becoming an ultimate goal for education systems, instead of acquisition of knowledge.

Mathematics education is not the exception to the rule.
One way of overcoming these problems -or at least to avoid some of the problematic aspects

of high stake testing- is to focus our attention in the classroom. Assessment can be done inside
the classroom (formative assessment), and outside the classroom (school system evaluation);
and it could be a close relationship between the two.

On one hand, standardized exams is the only way government educational offices and
international organizations (as OECD or UNESCO) have in order to measure students perfor-
mance and state of educational systems, this kind of assessment is done outside the classroom
by agents not directly involved in the teaching-learning process as teachers and students do;
on the other, formative assessment is the way teachers and students have in order to measure
their performance and development in learning tasks and their acquisition of knowledge inside
the classroom.

What I call classroom assessment should be the way to improve teaching-learning processes;
and outside evaluation (standardized testing made outside the classroom) would be the gauge
to measure the acquisition of knowledge and skills in schools.

Traditionally, the teaching process has been classified in three stages: planning, applying,
and assessing. In general, assessment is made by way of tests or examinations in order to get
information about students previous knowledge and skills, and about the ones acquired during
the teaching-learning process. But almost always, tests and questionnaires are given at the
end of a teaching cycle -call it teaching unit, course or semester-, and almost always its only
function is to gather evidences of the note the student has got. In the educational literature
this is called summative assessment.

So, we understand classroom assessment as the gathering of information to feedback and
improve the teaching and learning of any content matter. In order to be effective it should
be an integral part of the teaching methodology and not a separate issue ([1]). That is, the
teaching-learning process should take place in an environment of classroom assessment; this
concept is close to the concept of formative assessment.

Took in this way, assessment should be a continuous process in which teaching and learning
is embedded, and it could be used as well to give a note to the student at the end of the course,
i.e. students grading is only a tiny part of assessment.

In what Mathematics Education is concerned, as well as in the teaching and learning of
science and engineering, the use of technology is widely spread in classrooms; manly CAS and
DG software, and Information and Computer Technology (ICT).

With the use of technology in the teaching of mathematics people rises the question on how
to have an assessment that takes into account the technological aspect of the process. We claim
that it is not necessary to be concerned about this: The relevant issue on the use of technology,
besides its capacity to foster problem-solving skills and to develop mathematical thinking, is
its potential use as an assessment tool itself. That is, technology, particularly mathematics
teaching technology, could be a window toward students knowledge and attitudes in the sense
of [2].

Lets see for instance, if we ask our students to construct a square using only paper and
pencil and look at the figures, we are going to see more or less good drawings of squares, but
no more information about the knowledge of the student on the issue; in the other end of the
situation, if we ask students to construct a square in three different ways using a DG Software,
depending on the construction we are going to have a lot more information about the concept
of square the student knows and, besides, on the use of the software.

The discussion panel will discuss assessment and educational technology in this context
and the objective would be to jump into some preliminary conclusions and lay the basis for
further discussions and research projects.

Some of the questions that will trigger the discussion are:

• Should we use the same assessment tools as questionnaires and tests to assess technology
based teaching activities or we should look for different assessment tools?

• How can we observe the knowledge that a student puts into play when is using technology
in mathematical tasks?

• Is this knowledge the same regardless the technology, for instance a DG software or a
CAS software?
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• We need to assess the use of technology on everyday classroom or should we use tech-
nology as an assessment tool by itself?

The structure of the panel would be as follows:

1. The panel is one hour in duration

2. It is proposed at most three panelists. Each one should have a ten minutes presentation
addressing one or several of the discussion questions posed above. (30 minutes)

3. After this, we open the session to the opinions and commentaries of the audience (15
minutes).

4. Finally, each panelist should have 5 more minutes in order to closed his/her intervention
and propose some further discussion.

5. The panel should have a coordinator who organizes the discussion.

Note: The proposal of this Discussion Panel is part of the Infocab Project PB101213.

Keywords
Classroom assessment; Standardized tests; CAS and DG technology
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ación en el aula. Educación Matemática, vol. 21, núm. 2, pp. 117-142.
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Abstract

In Engineering degrees, the use of CAS tools must be integrated as an educational tool
that will have a professional use in the future, that is, they have to be something more than
class usage within a subject. In this paper, we present the experiences of a group of teachers
of the Applied Mathematics area at Málaga University teaching in Computer and Engineering
degrees. An integral program of training, use and creation of free software of Mathematics for
the students is developed. CAS tools are used in the subjects of the first course as habitual tool
of work. The formation in CAS is carried out by means of a on-line subject that introduces
the basic managing of several programs of Mathematics (Maxima, Octave, SciLab, R, Sage,
Geogebra, . . .). Some advanced applications of the use of these programs are introduced in
the subjects. Also, the creation of open sources software and development of CAS tools for
complete applications or modules for other programs are developed (development of routines
of symbolic calculation, cross-platform environments, web for free software, applications for
mobile devices, . . .).

Keywords
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Abstract

Most linear algebra courses teach the subject concentrating on square systems of equations
(number unknowns = number equations).

In this paper, I argue that this emphasis is wrong and we should teach the subject discussing
rectangular systems. This is particularly appropriate for engineering students.

Computer Algebra systems allow us to analyse rectangular systems easily, and therefore
allow us to teach this way. Examples from the author’s lecture notes will be given.

Keywords
Linear Algebra, Row reduction, Gaussian elimination, Determinants, over-determined systems
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Abstract

Nspire CAS can solve polynomial systems, using the Gröbner-Buchberger elimination
method, but users dont have access to an explicit function like the one found in Derive (the so
called “Groebner basis” function). Thus we cannot see how the method is used when solving
polynomial system with Nspire CAS. In this talk, we will show typical examples of polyno-
mial systems that arise when teaching Lagrange multipliers technique. In the first part, the
example will emphasise the importance of checking solutions and examining graphically the
problem. The second example, in part two, will show a classic optimization problem where we
will analyze the answer given by the commands “solve” and “zeros”: we will find one wrong
solution and some solutions will be missing (but simple parametric equations of the constraint
will help us find the right answer). Using Derive’s Groebner basis function, we will try to
show what can yield this problem.

When teaching row-reduce echelon form to students, we tell them that this is the way
a linear system should be solved in general instead of constantly applying the (black box)
“solve” command. In case of polynomial systems, access to a “Gröbner basis function” would
be, for users, an important tool for understanding results obtained by the Nspire CAS system.

Keywords
Polynomial systems, solving facilities, Lagrange multipliers, Gröbner basis.
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Abstract

We have been always surprised by the inability of many students to adequately treat some
problems of everyday life that only require of elementary mathematics (meanwhile they can
solve problems with a much more complicated background). Obviously, the reason is that
they haven’t been trained in facing these sorts of problems. We shall give an overview of some
of the typical mathematical problems that an average citizen needs to know how to face. In
most of them a CAS helps (avoiding the tedious computations), but cannot solve the problem
by itself. But we believe that CAS can be key in the process of experimenting with these
problems in order to achieve the necessary skills for solving them in real life.

Keywords
Basic Mathematics, Curriculum, CAS

1 Introduction

The first author has taught at the School of Statistics, the School of Education and the School
of Mathematics of the Universidad Complutense de Madrid for more than 25 years. His students
have ranged from freshmen to Ph.D. students.

The second author has been a mathematics high school teacher for more than 35 years. He has
also taught maths at different schools of the Universidad de Extremadura.

We have been always surprised by the inability of many students to adequately treat some
problems of everyday life that only require elementary mathematics (meanwhile they can solve
problems with a much more complicated background). Obviously the reason is that they haven’t
been trained in facing these sorts of problems.

An example is percentages. The first author is now teaching a subject entitled “Elementary
mathematics with computer” to 2nd year pedagogy degree students (in it, elementary mathematical
problems are treated using CAS and DGS). While most of these students could calculate a discount
on a price, not all could correctly solve a similar problem: write a computer program that, given
the total diameters of two tires, decides whether the new tire differs by more than 3 % w.r.t. the
old one (the obstacle was mathematical, not computer related). Moreover, they were not sure if
adding a tax plus a discount to a price (both expressed as percentages) did commute. Meanwhile,
they use SPSS in complicated statistical studies regarding pedagogical issues.

In ancient cultures mathematical research was mainly focused on topics with a direct appli-
cation: plane geometry (for surveying and architecture) and astronomy (for religious reasons and
navigation), although this knowledge was not intended for the average citizen. But these interests
have been changing in the last thousand years.

Many of the problems that could now be of “general interest” have an economical background,
and many require the use of elementary physics (mainly physical units). Some examples can be
found afterwards.
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2 Some of the examples detected

Examples of some of the topics that we have detected that could be labeled as important for an
average citizen (essential skills) follow. We have only included situations that we believe are not
correctly covered (in practice) by the Spanish educational system.

Economy:

• Do you save money if you change your present (perfectly working) refrigerator by an A++
one?

• According to your present telephone invoice, should you migrate to another company with a
completely different way to bill the phone calls that looks much cheaper?

• Should you change your present car (in its midlife) by a much more ecological new hybrid
for economical reasons?

• Are low consumption bulbs worth their higher price?

Nevertheless, there are many other mathematical topics related to real life situations. Some
examples follow.

Divisibility:

• My living room is 5.40m × 4.20m and I would like to cover the floor with tiles but I don’t
have a tile cutting machine. Which is the maximum tile size that I can use?

Dilating areas and volumes and scales:

• This frustoconical drinking glass looks a bit too small. I’ll buy this other one that is 1.3
times higher and wider. It is just a bit bigger than the other one, right?

• The rooms in this house floor plan look huge. Is the furniture represented in the house floor
plan at the correct scale?

Derivatives (or increments):

• I can find in a local newspaper that “Unemployment has decreased its growth” meanwhile
another paper (of a different political tendency) publishes the same day that “Unemployment
has grown”. Can we be assured that at least one of them is lying?

Combinatorics:

• In a certain lottery there are 100 numbers. The probability to win if I buy one day one number
is 1%. If I buy a ticket today and a ticket tomorrow the probability to win is 1%+1%=2%.
OK?

Cardinal of the union / Probability of the union:

• In this class there is 45% males and 30% people from Andalusia. Do you agree that one way
or another we cover 75% of the students?

Negative exponential:

• Why should I take antibiotics (and many other drugs) following a strict dosage schedule?

• I know that Carbon-14 is an unstable isotope of Carbon, but how does Carbon-14 dating
work?

Correlation:

• There is no “functional relation” between the height and weight of people, but is there any
other kind of “relation”?
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Normal distribution:

• How can shops decide which shoe sizes should they have in stock?

• For what range of student IQ is the curriculum designed?

Interpretation of graphic representations:

• In the figure below the evolution of a certain stock exchange index along one week is repre-
sented. It reflects huge economical movements, doesn’t it?

Partial ordering:

• According to a Spanish saying: “All comparisons are obnoxious” (“Todas las comparaciones
son odiosas”).

3 Remark

Once the first draft of this Extended Abstract was already prepared, one of the main Spanish
newspapers published an impressive report about the failures in elementary mathematics (and
other subjects) of students with a degree in Primary School Teaching during their competitive
recruitment examinations in the Madrid region1. The exercise with the worst results (7.09% of the
answers were correct) was an elementary example about time, weight and area unit conversion.

4 Conclusions

Taking into account that most citizens are not mathematicians, we believe that this sort of top-
ics/problems, closer to everyday life, should be included into the curricula in order to provide a
“more useful” mathematics education.

Moreover, the computations required by many of these problems can be bypassed using a CAS
(a CAS can even carry units along with the computations).

An issue to be discussed is whether it would be better to treat these topics/problems within
the traditional curricula or in separate workshops.

1Pilar Álvarez, Maestros suspensos en primaria (in Spanish). El Páıs, March 13th 2013 http://sociedad.elpais.
com/sociedad/2013/03/13/actualidad/1363202478_209351.html.
Anonymous, Las matemáticas se resisten (in Spanish). El Páıs, March 13th 2013. http://sociedad.elpais.com/

sociedad/2013/03/13/actualidad/1363201114_422663.html
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Abstract

A magic square of order n is a square arrangement of n2 real numbers, such that the sum
of the elements in each row, column, and diagonal is equal to a constant s, its magic sum.

Let the n× n matrix M denote a magic square, the n× 1 vector j the vector of ones, the

n× n matrix F the flip matrix, e.g. for n = 3 :




0 0 1
0 1 0
1 0 0


 , and ′ transposition.

The following interesting activities can be carried out in class at very different stages of
the course, using a Computer Algebra System like Derive to facilitate computations:

1. Computing the matrix product Mj and comparing it to the scalar product sj to check
whether the n row sums are indeed equal to s.

2. Computing the matrix product j′M and comparing it to the scalar product sj′ to check
whether the n column sums are indeed equal to s.

3. Computing the trace of M to check whether the sum of the elements of the main diagonal
is equal to s.

4. Computing the trace of FM (left multiplication by F reverses the rows of a matrix) to
check whether the sum of the elements of the antidiagonal of M is equal to s.

5. Reconsidering the equation Mj = sj to realize that s is one of the eigenvalues, and j an
associated eigenvector, of M .

Any 3 × 3 magic square can be written as the sum of two matrices, M = sG + N , where
G = 1

3
J (J = jj′ denotes the 3×3 matrix of ones), and N has a simple structure defined by

only two real numbers as well. The matrices G, N , and M provide good examples to compute
the trace, determinant, rank, and eigenvalues, and investigate the connections between them.

A further interesting activity is to compute the inverse (if M is nonsingular), or Moore-
Penrose inverse (if M is singular), of M , and investigate whether it is also magic. Again, the
use of a CAS is essential in order to facilitate computations.

The famous Lo-Shu magic square




4 9 2
3 5 7
8 1 6


 will be one of the examples used

throughout the presentation.

Keywords
magic squares; eigenvalues; inverses
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Abstract

The paradigm of time-and-content based education gives nowadays way to the new paradigm
of instruction-and-activity based education. The latter is a result of the widespread use of com-
puter technologies. But are they oversold or underused in education? We still observe patchy
implementation of these technologies in mathematics education. Computer technologies allow
to introduce

- teaching strategies that aim to increase the autonomy of learners

- learning methodology that puts learner autonomy at its heart

- assessment strategies that interpret and use student achievement to make decision about
the next steps in instruction.

The need of considering all the three components of the triad teaching-learning-assessment
(TLA) in tandem and not focus on any one of them is discussed. The role of informed use of
computer algebra in the TLA process is illustrated by means of appropriate applications. Au-
thors’ experience in developing instruction-and-activity based seminar and laboratory classes
in calculus is shared. They support self-directed (independent) learning. Computer algebra
systems serve as a knowledge and collaboration instrument not restricted to any particular
didactical model.

Keywords
Activity-based education, Mathematics with technology, Computer algebra, Calculus
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Abstract

Computer algebra systems (CAS) have improved the mathematical work of engineers. The
systems are used for numerical computations as well as for algebraic manipulations of equa-
tions. Moreover, the powerful graphical capabilities and the easy use of the graphics are applied
to display complicated functions and technical results. The techniques in hand calculations
are trusted into the background in favor of the systematic approach in mathematics and of
the exciting modelling of realistic systems. This exciting aspect has been taken up and the
CAS Maple was included in the education of engineers. Mathematical concepts are motivated
in a clear and vivid manner by the use of the visualization and animation capabilities of Maple.

In this paper the principal concept and the application of Maple in engineering education
will be demonstrated in various examples:

• Lengthy and abstract topics like the convergence of Fourier series to a given function are
discussed.

• The visualization of the wave equation in case of a vibrating string is performed.

• Eigenvectors can be identified geometrically by showing an animation of a rotating vector.

• Finally, the oscillations of an idealized skyscraper are computed to visualize the meaning
of eigenvalues and eigenvectors, physically.

For each of these examples a worksheet can be used interactively.

Keywords
Mathematics for Engineers, Maple, Mathematical Concepts, Visualization
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Abstract

Students and faculty have traditionally relied on handheld graphing calculators or using
Computer Algebra System (CAS) installed in computer labs on campus. The ubiquitous online
education has created a demand for an economical, ready online access to CAS.

In this presentation, we will introduce Omega, a free online CAS Explorer that provides
user with immense power in both symbolic and numeric computing. To use Omega, only a web
browser is required. User composes and submits mathematical query using a calculator-like
graphical user interface. (see Fig. 1) Upon submission, the query is processed by Omega’s
CAS engine, Maxima, and the result is displayed in text or graphic formats. Using the built-in
functions of the web browser, the output can be exported for further manipulation.

Omega can be accessed from desktop/laptop computers, ipad/tablets, and smartphones.
It is compatible with all major web browsers. In addition to Maxima, other CAS can also be
used as Omega’s underlying engines.

Fig. 1
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Below screen shot (Fig. 2) illustrates step-by-step how to use Omega interface to solve a
quadratic equation x2 − x− 1 = 0.

Fig. 2

Omega can visualize curves and surfaces via two dynamic plotting functions located on the
arithmetic and common symbols keypad: (Fig. 3)

Fig. 3
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The 2D plot function enters a default template in the input widow. The user can edit the
functions and adjust the plotting range. The following example shows how to plot function
x2 − x− 1 where x varies from -5 to 5: (Fig. 4)

Fig. 4

3D plot function is similar to 2D plot function: (Fig. 5)

Fig. 5
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Among advanced features, Omega incorporates powerful programming language in its func-
tions. Program can be written in CAS engine-specific programming languages: (Fig. 6)

Fig. 6

Just-in-time Help for all function keys is a very important feature for CAS users. Omega
function keys display mouse-over tool-tips description. (Fig. 7)

Fig. 7
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Click on the function key will display just-in-time Help from the underlying CAS engine
in the output window. The Help content provides specific descriptions of each function key,
query composition syntax, and additional examples: (Fig. 8)

Fig. 8

Users familiar with the CAS can turn off just-in-time Help by checking the box next to the
Expert option at the lower corner of the screen:

Fig. 9

The button will turn into after it is clicked, indicating computation is in progress.

Click on will terminate a running process.

References

Maxima Documentation (http://maxima.sourceforge.net)
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Abstract

We consider an autonomous system of ordinary differential equations, which is resolved
with respect to derivatives. To study local integrability of the system near a degenerate
stationary point, we use an approach based on Power Geometry and on the computation of
the resonant normal form. For the partial non Hamilton 5-parameter case of concrete planar
system, we found the almost complete set of necessary conditions on parameters of the system
for which the system is locally integrable near a degenerate stationary point. These sets of
parameters, satisfying the conditions, consist of 4 two-parameter subsets in this 5-parameter
space except 1 special hyper plane. We wrought down 4 the first integrals of motion as
functions in parameters of the system. But we can say nothing about possibility an existence
of additional first integrals at the single special values of one of the parameters.

Keywords
Ordinary differential equations, Integrability, Resonant normal form, Computer algebra
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Abstract

The paper presents some results of qualitative analysis of conservative systems. The mod-
ified Routh-Lyapunov technique is used as tool for investigation. Special attention is paid
to algorithms of finding and analysis of invariant manifolds on which elements of algebra of
problem’s first integrals assume a stationary value.

Keywords
first integrals, invariant manifolds, conservative system, stability

Introduction

Application of modern tools of computer algebra (CA) allows one significantly to increase the
number of effective algorithms which are used for qualitative analysis of dynamic systems. The
paper discusses several algorithms which are some generalization of the Routh-Lyapunov technique
[1] of analysis of conservative systems with algebraic first integrals. These algorithms are: the use
of enveloping integral for family of first integrals in order to find invariant manifolds (IM) and to
investigate their stability [2]; solving a system of stationary equations of a family of first integrals
with respect to some part of phase variables and some part of parameters of family’s first integrals
[3]; finding IM of 2nd and higher level on earlier found IMs. Efficiency of these approaches is
demonstrated by examples of analysis of two classical completely integrable systems.

1 Kovalevskaya’s Case.

In Kovalevskaya’s problem [4] of motion of a rigid body with a fixed point the equations of motion
write

2ṗ = qr, 2q̇ = −rp+ x0γ3, ṙ = −x0γ2, γ̇1 = rγ2 − qγ3, γ̇2 = pγ3 − rγ1, γ̇3 = qγ1 − pγ2,

and have the following first integrals

2H = 2p2 + 2q2 + r2 + 2x0γ1 = 2h, V1 = 2pγ1 + 2qγ2 + rγ3 = m,

V2 = (p2 − q2 − x0γ1)2 + (2p q − x0γ2)2 = k2, V3 = γ21 + γ22 + γ23 = 1.

Consider the problem of finding IMs on which Kovalevskaya’s integral V2 assumes a stationary
value. The necessary conditions of extremum for integral V2 have the form:

∂V2
∂p

= 4(py1 + qy2) = 0,
∂V2
∂γ1

= −2x0y1 = 0,
∂V2
∂q

= −4(qy1 − py2) = 0,
∂V2
∂γ2

= −2x0y2 = 0. (1)

From equations (1), where the following denotations y1 = p2 − q2 − x0γ1, y2 = 2p q − x0γ2 were
used, we conclude that the equations for one of invariant manifolds of stationary motions (IMSM),
which correspond to integral V2, can be written as

y1 = p2 − q2 − x0γ1 = 0, y2 = 2p q − x0γ2 = 0. (2)
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It is Delaunay’s manifold. The vector field on IMSM (2) is defined by the equations:

2ṗ = qr, 2q̇ = −r p+ x0γ3, ṙ = −2p q, γ̇3 = −q(p2 + q2)x−1
0 . (3)

Differential equations (3) have the following first integrals:

2H̃ = 4p2 + r2 = 2h, Ṽ1 = rγ3 + 2p(p2 + q2)x−1
0 = m, Ṽ3 = γ23 + (p2 + q2)2x−2

0 = 1. (4)

Let us state the problem of finding IMs of 2nd level on which the elements of algebra of the first
integrals of system (3) assume a stationary value. To this end, we construct the following linear
combination of integrals (4)

2K̃ = 2H̃ − 2ν1Ṽ1 + ν21 Ṽ2. (5)

The conditions of stationarity for K̃ write

∂K̃

∂p
= 2(1− ν1

x0
p)(2p− ν1

x0
(p2 + q2)) = 0,

∂K̃

∂q
= −2ν1q

x0
(2p− ν1

x0
(p2 + q2)) = 0,

∂K̃

∂r
= r − ν1γ3 = 0,

∂K̃

∂γ3
= −ν1(r − ν1γ3) = 0.

One of degenerated families of solutions of the above system is defined by the equations:

2ν1x0p− ν21(p2 + q2) = 0, r − ν1γ3 = 0. (6)

These are the equations of the family of IMSM on IMSM (2). The family of 2nd level IMSMs (6)
can be “lifted up” as invariant into the initial phase space. To this end, it is necessary to add the
Delaunay IMSM equations (2) to equations (6).

1.1 Kovalevskaya’s Case. Enveloping Integral

In order to find peculiar IMSMs of 2nd level of system (3) let us apply enveloping integral for the
family of integrals (5). Following to standard algorithm, we calculate derivative of integral K̃ with
respect to parameter ν1 (the parameter of the family of integrals) and equate the obtained result
to zero:

∂K̃

∂ν1
= −Ṽ1 + ν1Ṽ3 = 0.

From the latter expression we find ν1 = Ṽ1Ṽ
−1
3 . Consequently, the enveloping first integral of our

interest has the form: 2K̃0 = 2K̃ − Ṽ 2
1 Ṽ3

−1
or 2 ˜̃K0 = 2H̃Ṽ3 − Ṽ 2

1 .

Next, write down the necessary conditions of extremum for the integral ˜̃K0:

∂ ˜̃K0

∂p
= 4p(γ23 + (p2 + q2)x−2

0 ) + 4p(2p2 +
r2

2
)(p2 + q2)x−2

0 −

2(rγ3 + 2px−1
0 (p2 + q2))(3p2 + q2)x−1

0 = 0.

∂ ˜̃K0

∂q
= 4q(p2 + q2)x−2

0 (2p2 +
r2

2
)− 4pq(rγ3 + 2px−1

0 (p2 + q2))x−1
0 = 0,

∂ ˜̃K0

∂r
= r(γ23 + (p2 + q2)x−2

0 ) + (rγ3 + 2px−1
0 (p2 + q2))γ3 = 0,

∂ ˜̃K0

∂γ3
= 2γ3(2p2 +

r2

2
)− (rγ3 + 2px−1

0 (p2 + q2))r = 0.

It can easily be verified that equation

(p2 + q2)r − 2px0γ3 = 0 (7)

defines IMSM on which the enveloping integral assumes a stationary value, besides this IMSM is
the first integral of equations (3). The 2nd level IMSM obtained by the above method can be
“lifted up” into the phase space of the initial system. To this end, likewise above, we add the
equation of Delaunay’s IMSM to equation (7).
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1.2 Kovalevskaya’s Case. Stability.

Now let us consider the problem of stability for some above obtained IMSMs.
1. Let us write down the equations of perturbed motion in the neighborhood of Delaunay’s IM

(2):
ẏ1 = ry2, ẏ2 = −ry1, 2ṗ = qr, 2q̇ = −rp+ x0γ3,

ṙ = y2 − 2pq, x0γ̇3 = −q(p2 − q2) + py2 − qy1.
Here y1 = p2 − q2 − x0γ1, y2 = 2p q − x0γ2 are the deviations from Delaunay’s IM in perturbed
motion.

The system has the sign definite first integral

∆V2 = y21 + y22 >> 0.

The latter guaranties stability of IMSM (2).
2. Next, let us consider the family of IMSMs (6). Introduce the deviations from the elements

of this family of IMSMs:

z1 = 2x0p− ν1(p2 + q2), z2 = r − ν1γ3,

and write down differential equations of perturbed motion in this case. Because the first equation
of IM is nonlinear, we use maps on the IMSMs. It is possible to take, for example, the following
four maps when x0ν1 > 0:

q = ±
√

2px0/ν1 − p2, r = ν1γ3, (0 < p < 2x0/ν1,−ν1 < r < ν1),

p = x0/ν1 ±
√
x20/ν

2
1 − q2, r = ν1γ3, (−x0/ν1 < q < x0/ν1, −ν1 < r < ν1).

Analogous maps can be constructed when x0ν1 < 0. A vector field is defined in each map.
Let us write down equations of perturbed motion in the neighborhood of IM (6). In 4th map

these equations have the form:

ż1 = x0qz2, ż2 = −qz1/x0, ṙ = −2q(x0/ν1 −
√
x20/ν

2
1 − q2 − z1/ν1),

2q̇ = −z2x0/ν1 + r
√
x20/ν

2
1 − q2 − z1/ν1. (8)

Analogous equations can also be written in other maps on IM (6). Equations (8) admit the first
integral:

2∆K = z22 + z21/x
2
0.

In other maps the integral for equations of perturbed motion has analogous form. Because the
integral is sign definite on z1, z2, we conclude that IMSM (6) is stable.

2 Kirchhoff’s Problem

Let us consider the problem of motion of a rigid body in ideal fluid in case [5]. The differential
equations of motion

ṙ1 = (αr1 + βr2 + 2s3)r2 − r3s2, ṙ2 = −(αr1 + βr2 + 2s3)r1 − r3s1, ṙ3 = r1s2 − r2s1,
ṡ1 = −(βs3 + (α2 + β2)r2)r3 + (αr1 + βr2 + s3)s2,

ṡ2 = (αs3 + (α2 + β2)r1)r3 − (αr1 + βr2 + s3)s1, ṡ3 = (βr1 − αr2)s3 (9)

admit the following first integrals:

2H = (s21 + s22 + 2s23) + 2(αr1 + βr2)s3 − (α2 + β2)r23 = 2h,

V1 = s1r1 + s2r2 + s3r3 = c1, 2V2 = r21 + r22 + r23 = c2,

2V3 = (r1s1 + r2s2)((α2 + β2)(r1s1 + r2s2) + 2(αs1 + βs2)s3)

+s23(s21 + s22 + (αr1 + βr2 + s3)2) = 2c3. (10)

In order to find stationary solutions and IMSMs of system (9) we construct the families K of
first integrals

K = λ0H − λ1V1 − λ2V2 − λ3V3. (11)
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from problem’s first integrals (10).
The necessary conditions of extremum for K (11) with respect to variables s1, s2, s3, r1, r2, r3

∂K

∂s1
= λ0s1 − λ1r1 − λ3[(α2 + β2)r1(r1s1 + r2s2) + s2s3(αr2 + βr1) + s1s3(2αr1 + s3)] = 0,

∂K

∂s2
= λ0s2 − λ1r2 − λ3[(α2 + β2)r2(r1s1 + r2s2) + s1s3(αr2 + βr1) + s2s3(2βr2 + s3)] = 0,

∂K

∂s3
= λ0(αr1 + βr2 + 2s3)− λ1r3 − λ3[(αs1 + βs2)(r1s1 + r2s2) +

s3((αr1 + βr2 + 2s3)2 + s21 + s22 − s3(αr1 + βr2 + 2s3))] = 0,

∂K

∂r1
= λ0αs3 − λ1s1 − λ2r1 − λ3[(α2 + β2)s1(r1s1 + r2s2) + s1s3(αs1 + βs2)

+αs23(αr1 + βr2) + αs33 = 0,

∂K

∂r2
= βλ0s3 − λ1s2 − λ2r2 − λ3[(α2 + β2)(r1s1 + r2)s2 + (αs1 + βs2)s2s3

+βs23(αr1 + βr2) + βs33] = 0,

∂K

∂r3
= −((α2 + β2)λ0 + λ2)r3 − λ1s3 = 0. (12)

define the families of stationary solutions and the families of IMSM of differential equations (9).
Computer algebra system MATHEMATICA allows one to apply the Gröbner basis technique [6]
for finding solutions of nonlinear algebraic system. The Gröbner basis for system (12) constructed
with respect to some part of parameters λ0, λ1, λ2 and some part of phase variables r3, s3 writes:

{
λ2
(
pz2λ2 + q2x2λ3

)
, −q2xλ1−z

(
(βr1 + αr2) s21 + 2 (−αr1 + βr2) s1s2 − (βr1 + αr2) s22

)

λ2 −Gq2x2λ3, −pq2λ0−
(
β2r41 − 2αβr31r2 + r22

(
α2r22 + s21

)
− 2r1

(
αβr32 + r2s1s2

)
+

r21
(
Gr22 + s22

))
λ2, −yzλ2 − q2xs3λ3, −pz (αr1 + βr2)λ2 + qx2 (Gr3 − αs1 − βs2)λ3

}
.

(13)
Here the following denotations

q = βs1−αs2, x = r1s1 + r2s2, y = r1s2− r2s1, z = βr1−αr2, G = α2 + β2, p = r21 + r22. (14)

were used.
Let us consider one family of solutions of system (13) (here λ3 is the family parameter):

s3 = xy/pz, r3 = y/z, λ2 = −q2x2λ3/pz2,
λ1 = −

(
x
(
−pq2 +Gy2 +Gpz2

)
λ3
)
/pz2, λ0 = x2

(
y2 + pz2

)
λ3/p

2z2. (15)

Analysis of the above relations showed that expressions for r3, s3 (15) define IMSM of differential
equations (9). The vector field on IMSM (15) is described by equations

ṙ1 = r2

(
2xy

pz
+ αr1 + βr2

)
− ys2

z
, ṙ2 = −r1

(
2xy

pz
+ αr1 + βr2

)
+
ys1
z
,

ṡ1 =
−y (xyβ +Gpzr2) + z (xy + pz (αr1 + βr2)) s2

pz2
,

ṡ2 =
y (xyα+Gpzr1)− z (xy + pz (αr1 + βr2)) s1

pz2
. (16)

The expressions λ0, λ1, λ2 (15) are the first integrals of equations (16). It can be showed that these
integrals correspond to the integrals of initial differential equations (9):

λ̃0 = (V1(HV1 ±
√

(v21(H2 − 2V3) + 8GV 2
2 V3)λ3))/(V 2

1 − 4GV 2
2 ),

λ̃1 = ((2GHV1V
2
2 ± (V 2

1 − 2GV 2
2 )
√

(H2v21 − 2V 2
1 V3 + 8GV 2

2 V3)λ3)/(V2(V 2
1 − 4GV 2

2 )),

λ̃2 = (V 2
1 (4GHV 2

2 ± V1
√

(v21(H2 − 2V3) + 8GV 2
2 V3)λ3))/(V 2

1 − 4GV 2
2 ).
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2.1 Second Level Invariant Manifolds

Let us find IMSMs of 2nd level on IM (15). For this purpose, we shall use narrowing of the integral
K on IMSM (15). First integrals (10) on IM (15) in denotations (14) have the form:

H̃ = vx− q2x

2vz2
+
v2y2

z2
, Ṽ1 = x+

vy2

z2
, Ṽ2 =

vy2 + xz2

2vz2
,

Ṽ3 =

(
vy2 + xz2

) (
−q2x+

(
G+ v2

) (
vy2 + xz2

))

2z4
,

Using above integrals and taking into account expressions for λ0, λ1, λ2 (15), we can write integral
K (11) on IMSM (15) as:

K̃ = v2W12

(
W21 + 2GW12 + 2v2W12

)
λ3 = v2W12Q, (17)

where v = x/p, W12 = (y2 + pz2)/2z2, W21 = −pq2/z2 are the first integrals of differential
equations (16) on IMSM (15). The conditions of stationarity for K̃ (17) enable us to immediately
obtain one of stationary solutions of the problem. It has the form

v = x/p = (r1s1 + r2s2)/(r21 + r22) = 0. (18)

The rest solutions are determined by equations:

2
∂v

∂xi
W12Q+ v(

∂W12

∂xi
Q+W12

∂Q

∂xi
) = 0, (i = 1, 4) (19)

where x1 = r1, x2 = r2, x3 = s1, x4 = s2.
We shall not analyze system (19) here, only note that 2nd level IMSM (18) is stable, because

v is the first integral of equations (16). We also note that equation (18) defines IM of initial
differential equations.

All calculations have been performed with the aid of Mathematica system and program package
[7] written in Mathematica language.

The work was supported by the Program of Fundamental Researches of Presidium of the
Russian Academy of Sciences no. 17.1.

References

[1] Lyapunov A.M. The constant helical motions of a rigid body an fluid. Collected Papers.
Moscow: izd. Akad. Nauk SSSR, 1954, 1, pp. 276-319

[2] Irtegov V.D. On specificities of families of invariant manifolds of conservative systems.
Izvestiya VUZov Matematika, 2010. no.8, pp. 42-50

[3] Irtegov v.D., Titorenko T.N. The invariant manifolds of systems with first integrals // J. of
Applied Mathematics and Mechanics, 73, 2009, pp.379-384

[4] Kovalevski S. Sur le probleme de la rotation d’un corps solide autor d’un point fixe. // Acta
Math. 1888, V.12, pp.177-232

[5] Sokolov, V.V. A new integrable case for the Kirchhoff equations. Theoret. and Math. Phys.
1(129), 2001, pp.1335–1340

[6] Cox D., Little J., O’Shea D., Ideals, Varieties and Algorithms, N.Y, Springer, 1997, 513 p.

[7] Banshchikov, A.V., Burlakova L.A., Irtegov V.D.., Titorenko T.N. The software package for
selecting and investigation the stability of stationary sets of mechanical systems. Certificate
of state registration of the program on a computer, number 2011615235, on July 5, 2011 (in
Russian)

62



Orbital Reversibility of Planar Dynamical Systems

Antonio Algaba, Isabel Checa, Cristóbal Garćıa
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Abstract

We give a necessary condition for the orbital-reversibility of a planar system, namely, the
existence of a normal form under equivalence which is reversible to the change of sign in the
first variable. Based in this condition, we formulate a suitable algorithm to detect orbital-
reversibility and we apply the results to solve the center problem in a family of planar nilpotent
systems.
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1 Introduction

Consider a planar autonomous system of differential equations having an equilibrium point at the
origin given by

ẋ = F(x), (1.1)

where x = (x, y)T ∈ R2. We study if it admits some reversibility modulo C∞-equivalence (see [1]
and [2]).

The problem of determining if system (1.1) has some reversibility is consider in [3] and [4].
In this work, we study if there exists some time-reparametrization such that the resulting system
admits some reversibility. The existence of some orbital-reversibility is a valuable feature that
helps in the understanding of the dynamical behaviour of a given system.

Next, we give a precise definition of the reversibility we will deal with:
An involution is a local diffeomorphism σ ∈ C∞, such that σ ◦ σ = Id, σ(0) = 0 and

codim(Fix(σ)) = 1, where Fix(σ) = {x ∈ Rn : σ(x) = x} is the fixed point set of σ.
We say that system (1.1) is reversible if there exists some involution σ such that σ ∗ F = −F.
We say that system (1.1) is orbital-reversible if there exist an involution σ and a function

µ ∈ C∞, with µ(0) = 1 such that σ ∗ (µF) = −µF, (this means that F is reversible modulo a
time-reparametrization).

We have denoted the pull-back of a vector field of F by a transformation Φ as Φ ∗ F. If we
use a generator of the transformation, the notation U ∗∗ F := Φ ∗ F will be used instead. The

transformed system can be expressed in terms of nested Lie products. Let us define T
(0)
U (F) := F,

and

T
(l)
U (F) := T

(l−1)
U ([F,U]) =

l times︷ ︸︸ ︷
[ · · · [ F,U ] , · · · ,U ] =

[
T

(l−1)
U (F),U

]
, for l ≥ 1.

If we use both, a nonlinear time-reparametrization dt = µ(x)dT and a near-identity transfor-
mation with generator U(x), then the transformed vector field is given by:

U ∗∗ ((1 + µ)F) = U ∗∗ F + µF + µ [F,U] + (∇µ ·U)F +
1

2!
[[µF,U],U] + · · · . (1.2)

In our study, we assume a quasi-homogeneous expansion for the vector fiel F corresponding to
a type t = (t1, t2) ∈ N2. So, we can suppose that F is of the form

F(x) = F̃r(x) + Fr+1(x) + · · · , for some r ∈ Z, (1.3)
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where the lowest-degree quasi-homogeneous term F̃r 6= 0 is Rx-reversible, and Fr+k ∈ Qt
r+k for

all k ∈ N.

2 Some Definitions and Main Result

In this section, we introduce some definitions and we present our important result.
Firstly, we introduce the following vector spaces:

• Ot
k = {µ ∈ Pt

k : µ(−x, y) = −µ(x, y)}, the set of quasi-homogeneous scalar functions of
degree k which are odd in the first variable.

• Etk = {µ ∈ Pt
k : µ(−x, y) = µ(x, y)}, the set of quasi-homogeneous scalar functions of degree

k which are even in the first variable.

• Rt
k = {F = (P,Q)T ∈ Qt

k : P ∈ Etk+t1
, Q ∈ Ot

k+t2
}, the set of Rx–reversible quasi-

homogeneous vector fields of degree k.

• Stk := {F = (P,Q)T ∈ Qt
k : P ∈ Ot

k+t1
, Q ∈ Etk+t2

}, the set of Rx–symmetric quasi-
homogeneous vector fields of degree k.

It is easy to deduce that Pt
k = Ot

k

⊕ Etk and Qt
k = Rt

k

⊕Stk. This decomposition allow us to
define the corresponding projection operators as follows:

π(o)(µ) ∈
⊕

k

Ot
k, π(e)(µ) ∈⊕k Etk, for µ ∈

⊕

k

Pt
k, and

Π(r)(U) ∈
⊕

k

Rt
k, Π(s)(U) ∈⊕k Stk, for U ∈

⊕

k

Qt
k.

The main goal of this paper is to determine conditions for the orbital–reversibility of (1.3),
which will be based on the existence of a near-identity transformation Φ =

∑
j≥0 Φj , (Φj ∈ Qt

j),
and a scalar function µ ∈ C∞, with µ(0) = 1, such that Φ ∗ (µF) is Rx–reversible.

For our convenience, from now on we will write the time-reparametrization as 1 + µ, with
µ(0) = 0. Indeed, it will be written as 1 +

∑
j≥1 µj , where µj ∈ Pt

j for j ≥ 1.

Definition 1 We say that the vector field of system (1.3) is N -orbital–reversible (N ∈ N) if there
exist a vector field U ∈⊕j≥1Qt

j and a scalar function µ ∈⊕j≥1 Pt
j , such that J r+N (U ∗∗ ((1 +

µ)F)) is Rx-reversible.

Our idea is to adapt the normal form procedure in order to determine conditions under which
the normalized vector field is N -orbital–reversible. We introduce the Lie derivate along the lowest-
degree quasi-homogeneous term F̃r:

`k−r : Pt
k−r −→ Pt

k

µk−r −→ ∇µk−r · F̃r.

In the normal form reduction it is enough to take its quasi-homogeneous terms µk belonging to
Cor(`k−r) (a complementary subspace to Range(`k−r)).

We denote
R̂t

k := Rt
k ∩ Q̂t

k and Ôt
k := Ot

k ∩ Cor(`k−r),

where Q̂t
k is a complementary subspace to Ker(`k−r)F̃r in Qt

k.
Next, we plain to deduce some facts about the normal forms for orbital-reversible vector fields.

To this end, we use that Qt
k = Rt

k

⊕Stk, which allows to write the vector field (1.3) as:

F = F̃r +

∞∑

j=1

(F̃r+j + F̄r+j), (2.4)

where F̃r+j = Π(r)(Fr+j) ∈ Rt
r+j and F̄r+j = Π(s)(Fr+j) ∈ Str+j .

To describe a normal form procedure well adapted to the orbital-reversibility problem, let us
denote the above vector field as

F(0) := F = F̃(0)
r + (F̃

(0)
r+1 + F̄

(0)
r+1) + · · · .
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We observe that the lowest-degree quasi-homogeneous term is reversible: F̃
(0)
r ∈ Rt

r.

We define the homological operator L(m)
as,

L(1)
: R̂t

1 × Ôt
1 −→ Str+1

(Ũ1, µ̃1) −→ −[F̃(0)
r , Ũ1]− µ̃1F̃

(0)
r ,

and

L(m)
: Ker(L(m−1)

)× (R̂t
m, Ôt

m) −→ Str+m

(Ũ1, µ̃1, · · · , Ũm−1, µ̃m−1; Ũm, µ̃m) −→ −
m−1∑

j=0

[F̃
(m−1)
r+j , Ũm−j ]− µ̃m−jF̃

(m−1)
r+j .

It is evident that operator L(m)
depends on F̃

(m)
r , · · · , F̃(m)

r+m−1.
The following result characterizes the (N + 1)-orbital–reversibility of a vector field N -orbital–

reversible. Proceeding degree by degree and following the ideas of the classical normal form theory,
we obtain an algorithm to discarding cases the orbital–reversibility based of the next theorem.

Theorem 2 Let us consider a vector field F = F̃r+· · ·+F̃r+N−1+(F̃r+N +F̄r+N )+· · ·, satisfying
F̄r+N 6= 0 and Proj

Im(L(N)
)
(F̄r+N ) = 0, for some N ∈ N. Then, F is not orbital–reversible.

3 Application

Let us consider the following family of planar vector fields:

(
ẋ
ẏ

)
=

(
y

σx4q+1

)
+

(
a1xy + a2x

2q+2

b1y
2 + b2x

2q+1y

)
, (3.5)

where σ = ±1, q ∈ N.
This family has been studied by several authors. Namely, the analytic integrability for this

family has been studied in [5]; the center problem for σ = −1 (which corresponds to the mon-
odromic situation) has been partially studied in [6]; and the reversibility problem is completely
solved in [3]. With respect to the orbital-reversibility problem, we have the following result:

Theorem 3 System (3.5) is orbital-reversible if and only if one of the following conditions is
satisfied:

(a) a2 = b2 = 0.

(b) a2 = a1 = b1 = 0, b2 6= 0.

(c) a1 = b1 = 0, a2 6= 0.

(d) a1 + 2b1 = b2 + 2(q + 1)a2 = 0, a2b1 6= 0.

(e) b2 = (2q + 1)a2, b1 = (2q + 1)a1, a2(a1 + 2b1) 6= 0.

Proof:
The vector field of the statement can be written as F = F̃r + Fr+1, where

F̃r := (y, σx4q+1)T ∈ Qt
2q, and Fr+1 ∈ Qt

2q+1,

being r = 2q and t = (1, 2q + 1). We observe that F̃2q is Rx– and Ry–reversible. It is enough to
study the Rx– and the Ry–orbital-reversibility of the vector field F.
(?) We start with the Rx–orbital-reversibility. As we will see later, in this case is sufficient to reach
the N = 8-orbital–reversibility to solve the orbital–reversibility problem. To reduce the vector
field of the statement to the normal form F(8), we take the generator

Ũ =

(
α1x

2

α2xy

)
+

(
0

α3x
2q+3

)
+

(
α4x

4

α5x
3y

)
+ · · · ∈

8⊕

j=1

Rt
j ,
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and the time-reparametrization associated to

µ̃ = γ1x+ γ3x
3 + γ5x

5 + γ7x
7 ∈

8⊕

j≥1
Ôt

j ,

where αi and γi are arbitrary parameters. Using Maple in the computations, we obtain the
following normal form:

F(8) = Ũ ∗∗ ((1 + µ̃)F) = F̃2q + F̃2q+1 + (F̃2q+2 −
1

3(4q + 3)
λ(2)

(
0

x2q+2y

)
)

+F̃2q+3 + (F̃2q+4 +
σ

3(4q + 5)(4q + 3)3
λ(4)

(
0

x2q+4y

)
)

+F̃2q+5 + (F̃2q+6 + λ(6)
(

0
x2q+6y

)
)

+F̃2q+7 + (F̃2q+8 + λ(8)
(

0
x2q+8y

)
) + · · · .

So, by applying Theorem 2, if F is orbital-reversible then the coefficients λ(2j) must vanish.
The first normal form coefficient λ(2j) is:

λ(2) = a2((2q + 3)(2q + 1)a1 + 2qb1) + b2(2qa1 − 3b1). (3.6)

To study the vanishing of this coefficient, we consider the following two possibilities:

(1) 2qa1 − 3b1 = 0, and then λ(2) vanishes in a couple of cases:

(1a) a2 = 0. In this case, the next normal form coefficient is

λ(4) = qb2a
3
1,

which vanishes if b2 = 0 (in this case, covered in item (a), the system is Ry-reversible),
or if a1 = 0 (now, the system is Rx-reversible; this situation is described in item (b)).

(1b) a2 6= 0, (2q + 3)(2q + 1)a1 + 2qb1 = 0, which provides a1 = b1 = 0. In this case the
system is Rx-reversible. This is the situation described in item (c).

(2) 2qa1 − 3b1 6= 0, and then λ(2) vanishes if, and only if,

b2 = − (2q + 3)(2q + 1)a1 + 2qb1
2qa1 − 3b1

a2. (3.7)

For this value, the next normal form coefficient is

λ(4) =
4q + 3

2qa1 − 3b1
a2(a1 + 2b1)(b1 − (2q + 1)a1)p4(a2, a1, b1, q, σ),

where we have denoted

p4(a2, a1, b1, q, σ) = 3(2q + 5)(4q + 3)2((2q + 3)(4q + 1)a1 − (4q + 9)b1)a22

+σ(2qa1 − 3b1)(2q(120q2 + 202q + 49)a21 − (512q2 + 844q + 135)a1b1 + 5(52q + 81)b21).

The vanishing of λ(4) leads to some subcases:

(2a) a2 = 0, which implies b2 = 0 . We get again item (a).

(2b) a2 6= 0, a1+2b1 = 0. This hypothesis implies that b1 6= 0 (otherwise, a1 = b1 = 0). Moreover,
the equation (3.7) reduces to b2 = −2(q + 1)a2. Now, the system (3.5) is Hamiltonian, with
Hamiltonian

h(x, y) = −1

2
y2 +

σ

2(2q + 1)
x4q+2 + b1xy

2 − a2x2q+2y.

If we denote u = x, v = y − 2b1xy + a2x
2q+2, then system (3.5) becomes:

u̇ = v,

v̇ = σu4q+4 + (2(q + 1)a22 − 2b1σ)u4q+2 +
a2u

4q+4 − b1v2
1− 2b1u

,

which is Rv–reversible (item (d)).
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(2c) a2(a1 + 2b1) 6= 0, b1 = (2q + 1)a1. Now, the equation (3.7) reduces to b2 = (2q + 1)a2.

In this case, it is more convenient to work with system (3.5) with the transformation x = u,
y = v(1 + a1u)2q+1, i.e.:

u̇ = v(1 + a1u)2q+2 + a2u
2q+2,

v̇ =
σu4q+1

(1 + a1u)2q+1
+

(2q + 1)a2
1 + a1u

u2q+1v.

The time reparametrization dT = (1 + a1X)2qdt and the transformation X = u
1+a1u

, Y = v,
yield

X ′ = Y + a2X
2q+2,

Y ′ = σX4q+1 + (2q + 1)a2X
2q+1Y,

which is RX–reversible (item (e)).

(2d) a2(a1 + 2b1)(b1 − (2q + 1)a1) 6= 0, p4(a2, a1, b1, q, σ) = 0. In this case, both coefficients λ(6)

and λ(8) can not vanish simultaneously, and the vector field is not orbital-reversible.

(??) The situation with the Ry–orbital-reversibility does not include any new case.
From the proof of the theorem, we obtain that system (3.5) is orbital-reversible if, and only if,

it is 8-orbital reversible.
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Abstract

Using the solution of the center-focus problem from [4], we present the investigation of
isochronicity and critical period bifurcations of two families of cubic 3-dim systems of ODEs.
Both cubic systems have a center manifold filled with closed trajectories. The presented study
is performed using computer algebra systems Mathematica and Singular.
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1 Introduction

The main topic of our work is the investigation of the quadratic 3D system of ODEs

u̇ = −v + au2 + av2 + cuw + dvw,
v̇ = u+ bu2 + bv2 + euw + fvw,
ẇ = −w + Su2 + Sv2 + Tuw + Uvw,

(1)

with real coefficients a, b, c, d, e, f, S, T and U . System (1) was studied already in [4], and further
in [5], [8], where planar polynomial systems of ODEs appearing on the center manifold of (1) were
investigated.

We present the criteria on the coefficients of the system to distinguish between the cases of
isochronous and non-isochronous oscillations, considered in [5] and [8]. Bifurcations of critical
periods of the system are studied as well. Both phenomena as well as the linearization and the
derivation of the period function (2) and the linearizability quantities are defined in the following
section.

In order to study the period function

T (r) = 2π

(
1 +

∞∑

k=1

Tkr
k

)
(2)

of the centers on the center manifolds and obtain the necessary and sufficient conditions of
isochronicity of the centers and to describe the critical period bifurcations (c.f. [10]) we have
used the computer algebra system Mathematica and the special purpose computer algebra sys-
tem Singular [7], which has powerful routines for analyzing polynomial ideals, to find the zero
sets (varieties) of the obtained polynomial ideals. To obtain the corresponding ideals we used the
polar coordinate approach as well as the complexification method for two dimensional polynomial
systems (both explained in the following section). It turns out [10] that the isochronicity problem

68



can be reduced to the linearizability problem, so we can reduce the problem of isochronicity to
finding the variety of the ideal generated by (all) linearizability quantities, ikk, jkk, k = 1, 2, . . .,
which are of polynomial dependence on the parameters of (1). On the other hand we can consider
directly the isochronicity ideal, generated by coefficients Tk (which are also of polynomial depen-
dence on the coefficients of (1)). We denote the so called linearizability ideal (generated by all
linearizability quantities ikk, jkk, k = 1, 2, . . .) by

L = 〈i11, j11, i22, j22, . . .〉 (3)

and LK = 〈i11, j11, i22, j22, . . . , iKK , jKK〉. To solve the problem of linearizability means to find an
integer K ≥ 1 such that V (L) = V (LK) (i.e. the variety of the linearizability ideal equals to the
variety of the ideal generated by first K pairs of linearizability quantities). For this we compute the
irreducible decomposition of V (LK) and using appropriate methods show that all systems from
each component of the decomposition are linearizable (implying the obtained conditions being
sufficient).

2 Definitions

The linear part of system (1) at the origin has two pure imaginary and one non-zero (real) eigen-
value. By definition a Ck-manifold W c ≡W c(0, U) in a neighborhood U of 0 is said to be a center
manifold of (1) if W c is invariant under the flow as long as the solution remains in U and W c

is the graph of a Ck-function w = h(u, v) which is tangent at 0 to the (u, v)-space. There is a
fundamental theorem (c.f. [2]) which implies that there exists a neighborhood U of 0 such that
there exists a local center manifold W c of (1). Note that on any local center manifold, w = h(u, v),
system (1) becomes a two dimensional (real) system, which can be put in the form

u̇ = −v + P (u, v) ,
v̇ = u+Q (u, v) .

(4)

Usually for real two dimensional polynomial systems of the form (4) with maximal degree n the
qualitative analysis is done either by introducing x = u+ iv and y = x = u− iv and obtain the so
called complexification

ẋ = x−
n−1∑

p+q=1

ap,qx
p+1yq, ẏ = −y +

n−1∑

p+q=1

bq,px
qyp+1,

for which the linearizability problem is to decide whether the system can be transformed to the
linear system Ẋ = X, Ẏ = −Y by means of a formal change of the plane variables

X = x+

∞∑

m+j=2

u
(1)
m−1,j(a, b)x

myj , Y = y +

∞∑

m+j=2

u
(2)
m,j−1(a, b)xmyj . (5)

If such a transformation exists we say that the system is linearizable.
Differentiating with respect to t on both sides of the above two equalities and substituting the

complexification in the resulted equalities and then using (5) and the original system (4) yields

(after equating coefficients of the same powers) a linear recurrence system for u
(1)
m−1,j and u

(2)
m,j−1.

It turns out (see [10], p. 191) that u
(1)
q1,q2 and u

(2)
q1,q2 can be computed whenever q1 6= q2. For

q1 = q2 = k ∈ N some additional (polynomial) conditions, let’s say ikk = 0 and jkk = 0 must be
fulfilled. The quantities ikk and jkk are called k-th linearizability quantities. They generate the
linearizability ideal defined above.

If P and Q in (4) are polynomials of degree at most n without constant and linear terms, it
is convenient to introduce the polar coordinates u = r cosϕ, v = r sinϕ and find the so-called
Poincaré return map R (r), defined by the equation of the trajectories

dr

dϕ
=

r2F (r, cosϕ, sinϕ)

1 + rG (r, cosϕ, sinϕ)
= R (r, ϕ) . (6)

The function R (r, ϕ) is periodic (with the least period 2π in variable ϕ) and analytic for (small
enough) |r| < r∗ (and all ϕ); [8]. Thus, we can expand R (r, ϕ) in a convergent power series in r
to obtain

dr

dϕ
= r2R2 (ϕ) + r3R3 (ϕ) + · · · . (7)
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One can choose (c.f. [8]) the line segment Σ = {(u, v) ; v = 0, 0 ≤ u ≤ r∗}, where r∗ is chosen to
be small enough, to consider the first return of (6) from r (ϕ = 0) = r0 to r (ϕ = 2π) = R (r0).

Expanding r (ϕ, r0) into a (for all ϕ ∈ [0, 2π] and all |r0| ≤ r∗ convergent) power series in r0
one obtains

r (ϕ, r0) = w1 (ϕ) r0 + w2 (ϕ) r20 + w3 (ϕ) r30 + · · · ,
which is a solution of (7) and inserting r (ϕ, r0) into (7) yields recurrence differential equations for
functions wj (ϕ) , defining the Poncaré return map

R (r0) := r (2π, r0) = r0 + w2 (2π) r20 + w3 (2π) r30 + · · · .

Obviously, zeros of the difference function P (r0) = R(r0) − r0 correspond to closed orbits. In
particular, isolated zeros correspond to limit cycles and if P (r0) ≡ 0 the system has a center at
the origin, yielding the conditions wj (2π) = 0 for all j > 1.

Suppose the origin is center for system (4) and that the number r∗ > 0 is so small that the line
segment Σ = {(u, v) ; v = 0, 0 ≤ u ≤ r∗} lies wholly within the period annulus. For r satisfying
0 < r < r∗, let T (r) denote the least period of the trajectory through (u, v) = (r, 0) ∈ Σ. The
function T (r) is the period function of the center. If T (r) is constant, then the center is said to
be isochronous. It turns out (c.f. [10], p. 176-180) that T (r) from (2) can be written in the form

T (r) = 2π(1 +

∞∑

k=1

p2kr
2k). (8)

Finally, note that any value r > 0 (r < r∗) for which T ′(r) = 0 is called a critical period. When
we consider bifurcations of critical periods we are interested in an upper bound of the number of
critical periods in small neighborhood of the singular point; it is the so-called problem of critical
period bifurcations, considered for the first time in [1].

For computing the irreducible decomposition of an ideal a modular approach can be used. The
Singular routine (c.f. [3]) minAssGTZ, which is based on the algorithm of [6], involves multiple
computations of Gröbner bases which are extremely time and memory consuming, especially for
large polynomials which is ususally the case in computations mentioned above. Thus, the routine
minAssGTZ very seldom is able to complete computations and return minimal associate primes
in cases of non trivial ideals (generated for instance by focus or linearizability quantities or the
coefficients, Tk, of the period function (2)) when computing over the field of rational numbers.
To overcome the difficulty the modular approach described in [9] has proved to be very efficient.
Following the approach one first computes minimal associate primes over a field Zp of a prime
characteristic p (usually p = 32003 is taken), and then lifts the obtained decomposition to the
polynomial ring of characteristic zero using the rational reconstruction algorithm of [11] applied in
Mathematica.

3 Main results

Edneral et al. [4] studied the dynamics of trajectories at the center manifold for the system (1).
They found five conditions for the existence of a center on the center manifold:

1. S = 0;

2. a = b = c+ f = 8c+ T 2 − U2 = 4(e− d)− T 2U2 = 2(e+ d) + TU = 0 and S = 1;

3. a = b = c = f = d+ e = 0 and S = 1;

4. d+ e = c = f = T − 2a = U − 2b = 0 and S = 1;

5. c = d = e = f = 0 and S = 1.

In the sequel, for cases 1. and 4. (defined above) we state some results on isochronicity and
critical period bifurcations of a center on the center manifold of (1).

Case 1. Obviously w = 0 is a center manifold and the corresponding 2D system is

u̇ = −v + a
(
u2 + v2

)
,

v̇ = u+ b
(
u2 + v2

)
.

(9)
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Isochronicity of (9) was studied in [8] by introducing the polar coordinates. Following the procedure
described in the previous section we find that T2 = 2π

(
a2 + b2

)
. Thus, we see that the necessary

condition for isochronicity of system (9) is a = b = 0, which, obviously, is also the sufficient
condition. To obtain some information about critical periods of system (9) we investigate the
derivative, T ′(r) = 2T2 (a, b) r + 3T3 (a, b) r2 + · · · , of the period function (2). Critical periods
of system (9) are zeros of T ′ (r) = 0. Recall that series (2) converges for r small enough. Note
that the coefficients Tk regarded as polynomials in variables a and b are homogeneous. Since
T2 = 2π

(
a2 + b2

)
> 0 for all (a, b) near the origin, by [10], Lemma 6.4.2, we have the following

result.

Theorem 3.1. System (9) has an isochronous center if and only if a = b = 0 and no critical
periods bifurcate from centers of system (9).

Case 4. On the center manifold u2 + v2 − w = 0 (c.f. [4]) the corresponding 2D system reads

u̇ = −v + (a+ dv)
(
u2 + v2

)
,

v̇ = u+ (b− du)
(
u2 + v2

)
.

(10)

The isochronicity problem and the related problem of linearizability seem to be at first glance
two different problems. However, according to a theorem of Poincaré and Lyapunov (see e.g.
Theorem 4.2.1 in [10]) these two problems are equivalent.

In (10) after substituting

a11 = b11 = d, a01 = −b+ ia and b10 = −b− ia (11)

one obtains system
ẋ = i(x− a11x2y − a01xy),
ẏ = −i(y + b11xy

2 + b10xy),
(12)

where akj , bkj ∈ C.
We divide by i and consider akj , bkj as independent parameters (not necessary satisfying condi-

tion (11)) and y as an independent unknown function (not necessary satisfying the condition y = x)
and solve the problem of linearizability for this more general system, obtaining the following result.

Theorem 3.2. System (12) is linearizable if and only if one of the following conditions holds:

1) a01b10 + b11 = b10 = a11 − b11 = 0;

2) a01b10 + b11 = a01 = a11 − b11 = 0.

The Darboux linearization in the proof of the above theorem (see the proof of Th. 2 in [5])
yields the following first two isochronicity quantities for real system (10):

p2 = a2 + b2 + d

p4 = −2(a2 + b2)2.
(13)

Now, we obtain some information about critical periods of system (10) investigating the derivative
T ′(r) of period function.

Theorem 3.3. If in system (10)
d = −a2 − b2 (14)

then one critical period bifurcates from the origin after small perturbations.

Proof. Inserting (13) into T ′(r) we obtain

T ′(r, (a, b, d)) = 2p2(a, b, d)r + 4p4(a, b, d)r3 + · · · . (15)

Let system (10) with parameters a = a∗, b = b∗, d = d∗ satisfies condition (14), that is, d∗ =
−a∗2 − b∗2. If a∗2 + b∗2 6= 0, then p4 < 0. Choosing d > −a2 − b2 and sufficiently small we
obtain p2 > 0 and |p2| � |p4|, yielding a system with a small root of T ′(r) near the origin. If
d = a = b = 0 then we first perturb the system in such a way that d = −a2−b2 and then apply the
perturbation described above, again obtaining a critical period of the period function in a small
neighborhood of the origin.
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Corollary 3.4. System corresponding to the fourth case above has isochronous center if and only
if a = b = d = 0.

From the real system (10) computing we find T2 = a2 + b2 + d and T4 = −2
(
a2 + b2

)2
. By

results of [10], p. 287-295, to prove that at most one critical period bifurcates from a center it is
sufficient to show that T2k ∈ 〈T2, T4〉 for all k > 2. However, using its complex form (12) one can
prove the equivalent statement, namely: p2k ∈ 〈p2, p4〉 for all k > 2. In [8], Th. 3.5, the following
theorem is proved:

Theorem 3.5. At most one critical period bifurcates from centers on the center manifold of system
(10) after small perturbations.
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Abstract

We use a formal integral to study the structure of caustics in the Hénon-Heiles model. A
Gustavson-like formal integral of motion is used (together with the Hamiltonian of the system)
to study analytically the structure of caustics (the structure of the velocity field in the case
of projection to the coordinate plane) in the system. Results obtained analytically by using a
formal integral of motion are compared with those obtained by the numerical integration.
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Tree structures in Poisson series processors
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Abstract

Much of the work concerned with the application of perturbation theories in celestial
mechanics, and particularly in the development of analytical theories of the motion of celestial
bodies, can be reduced to algebraic operations on Poisson series.

The aim of this contribution is to make a review on the use of tree structures for the storage
of Poisson series. We analyse a type of structure based on maps, as well as its representation in
the form of red–black tree. We also compare the complexity of some fundamental algorithms
in their corresponding computer implementation as lists and red–black trees.

Keywords
Symbolic computation, Poisson series, Maps, Multimaps, Complexity

1 Introduction

Since the early sixties, investigators used computers to generate analytical expressions. The first
Poisson series processors were born to deal with the theory of the Moon, considered as one of the
hardest problems in celestial mechanics. Later, analytical theories for the rotation of the Earth
(Kinoshita, 1977) were treated with the help of symbolic computation packages. Nowadays there
are many open problems which requires massive symbolic computation.

Many Poisson series processors have been developed until now, as PSP (Broucke, 1970), MAO
(Mechanized Algebraic Operations) (Rom, 1969), TRIGMAN (Trigonometric Manipulator) (Jef-
ferys, 1970), MSNam (Henrard, 1986), PARSEC (Richardson, 1989), PSPC (Abad and San–Juan,
1993), and others. We also would like to mention that MSNam software (Manipulateur de Séries
de Namur) was first written by H. Claes, J. Henrard, M. Moons and J.M. Zune. It was later im-
proved by M. Moons (1993) and the last version in Fortran 90 was made by J. Henrard in 2004. In
this version, the arguments and exponents of the series and the indication that the trigonometric
expression is a cosine or a sine are coded and packed in a large array of integers.

Furthermore, several general purpose systems such as Mathematica, Macsyma, Reduce, Maple,
Matlab and others have been designed to treat a wide range of problems from many branches of
Science. Because of their universality, they are not as efficient as special purpose systems designed
for solving some specific applications. In particular, high accuracy analytical problems of celestial
mechanics involving perturbation methods require specific symbolic processors.

In this paper, we analyse the red–black tree structure and the way it can be used to represent
computationally a Poisson series. This structure leads to best computational times in the basic
operations with Poisson series, as addition and multiplication of Poisson series.

2 Poisson series as a symbolic object

In this section, we follow F. San–Juan and A. Abad (2001) to introduce the representation of a
mathematical object in a computer. We will focus our attention on the set Pn,m of Poisson series
with n polynomial variables x1, . . . , xn, and m angular variables φ1, . . . , φm. A Poisson series is a
map P : Rn × Rm → R such that

P (x1, . . . , xn, φ1, . . . , φm) =
∑

i1,...,in

∑

j1,...,jm

Cj1,...,jmi1,...,in
xi11 x

i2
2 · · ·xinn

cos

sin
(j1φ1 + · · ·+ jmφm) , (1)
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where i1, . . . , in, j1, . . . , jm ∈ Z. The set Pn,m, with the addition of Poisson series and the mul-
tiplication of a Poisson series by a real number, is a vectorial space. The partial derivative of a
Poisson series with respect to a polynomial or angular variable is also a Poisson series, as well as
the multiplication of two Poisson series.

We look for a canonical representation for each equivalence class defined in Pn,m. For that
purpose, the following operations must be performed over each Poisson series:

1. The first non–zero coefficient of the angular variables must be positive. If not, we will apply
the following rules:

sin(−λiφi + · · ·) = − sin(λiφi − · · ·) , cos(−λiφi + · · ·) = cos(λiφi − · · ·) .

2. The terms of a Poisson series will be ordered following a lexicographical order, as follows: let
us condider two terms of a Poisson series, τ1 and τ2, given by

τ1 = C
i
(1)
n+1,...,i

(1)
n+m

i
(1)
1 ,...,i

(1)
n

x
i
(1)
1
1 x

i
(1)
2
2 · · ·xi

(1)
n
n T (1)(i

(1)
n+1φ1 + · · ·+ i

(1)
n+mφm) ,

τ2 = C
i
(2)
n+1,...,i

(2)
n+m

i
(2)
1 ,...,i

(2)
n

x
i
(2)
1
1 x

i
(2)
2
2 · · ·xi

(2)
n
n T (2)(i

(2)
n+1φ1 + · · ·+ i

(2)
n+mφm) .

We say that τ1 < τ2 if for the first k ∈ {1, . . . , n, n + 1, . . . , n + m} such that i
(1)
k 6= i

(2)
k ,

then i
(1)
k < i

(2)
k is verified or, if for all k ∈ {1, . . . , n + m}, i(1)k = i

(2)
k , and T (1) = cos and

T (2) = sin.

3. The terms of a Poisson series with identical polynomial and angular part must be grouped
together.

3 Red–black trees and maps

As pointed out in (San–Juan and Abad, 2001), most of the operations involving a series are based
on navigating and searching through the structure that represents the series. For example, the
addition of two Poisson series is equivalent to insert each term of one series into the other one.
Thus, a good choice of the data structure cause simple and efficient algorithms. In this section,
we introduce two objects (red–black trees and maps) which have resulted to be very useful in the
representation of a Poisson series.

3.1 Red–black trees

The binary tree is a very useful data structure for rapidly storing sorted data and rapidly retrieving
saved data. A binary tree is composed of parent nodes, or leaves, each of which stores data and
also links to up to two other child nodes (leaves), one of them placed to the left and the other one
placed to the right. In this structure, the relationship between the leaves linked to and the linking
leaf makes the binary tree an efficient data structure: the leaf on the left has a lesser key value,
and the leaf on the right has an equal or larger key value.

A special type of tree is the red–black tree. In a red–black tree, each node has a color attribute,
the value of which is either red or black. In addition to the ordinary requirements imposed on
binary search trees, the following additional requirements of any valid red–black tree apply:

1. A node is either red or black.

2. The root is black.

3. All leaves are black, even when the parent is black.

4. Both children of every red node are black.

5. Every simple path from a node to a descendant leaf contains the same number of black nodes.

A critical property of red–black trees is enforced by these constraints: the longest path from
the root to a leaf is no more than twice as long as the shortest path from the root to a leaf
in that tree. The result is that the tree is roughly balanced. Since operations such as inserting,
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deleting, and finding values requires worst case time proportional to the height of the tree, this fact
makes the red–black tree be an efficient data structure. For instance, the search–time results to
be O(log n). As we will discuss later, the use of this structure reduces significantly the complexity
of the algorithms for addition and multiplication.

As mentioned above, in a binary tree, each node stores a key value (which must be unique in
our case) and some associated data. For every node in the tree, all keys in the left subtree are
smaller than the key of the node, and all keys in the right subtree are larger than the key of the
node. So, each node is comprised of a key, a value, and a reference to the left (smaller keys) and
right (larger keys) subtrees. This means that the key is the way to introduce the lexicographical
order in the tree structure.

3.2 Maps

A map is an indexed data structure, similar to a vector. However, maps differ from vectors in two
important points:

1. In a map, the index values (key values) can be any ordered data type, that is, any data type
for which a comparison operator can be defined can be used as a key.

2. A map is an ordered data structure, elements are maintained in sequence, the ordering being
determined by key values.

4 Poisson series as computational objects

Now, we will consider the basic information which characterizes a Poisson series, as well as the data
structure to store it in the computer. This must be done preserving the canonical representation
we have chosen. Let us consider a term of a Poisson series,

τ = Cxi11 x
i2
2 · · ·xinn T (in+1φ1 + · · ·+ in+mφm) .

The information associated to each term of a Poisson series is given by the following elements:

1. A real number C ∈ R for representing the coefficient of the term.

2. A set of n integers i1, . . . , in ∈ Z for representing the exponents of the polynomial part.

3. A set of m integers in+1, . . . , in+m ∈ Z for representing the coefficients of the angular part.

4. An integer t ∈ Z (t = 0 if T = cos and t = 1 if T = sin).

A Poisson series is computationally considered as a hierarchic structure ordered by a key. This
means that the adequate object to store a Poisson series is a map. Each term of the Poisson series
corresponds to a node in the map structure. The data associated to each node of the map is a
real number representing the coefficient of the corresponding term (C), and the key of each node
is given by the set (i1, . . . , in, in+1, . . . , in+m, t).

The most common option for the storage of a Poisson series is the linked list, where each
node contains the main characteristics of a separate term of the series. However, the most of the
operations involving a series are based on navigating and searching through the structure that
represents the series. In order to minimize the searching, deleting and inserting times of a term
in a Poisson series, we have adopted the red–black tree as the structure to store a series in the
computer. As we have already mentioned above, inserting, deleting, and finding values requires
worst case time proportional to the height of the tree. Thus, we will represent a Poisson series as
a red–black tree.

Moreover, as pointed out in (San–Juan and Abad, 2011), Poisson series involved in prob-
lems of celestial mechanics present small values for indices i1, . . . , in+m, normally in the interval
[−127, 128]. On the other hand, the most of the integers i1, . . . , in+m are zero. These two consid-
erations should be taken into account in the way the structure for the representation of the key of
each node, and the series itself, is coded.

If we store the key of a term in a vector structure, and assuming n and m polynomial and
angular variables respectively, the complexity of the comparison of the keys is O(n+m). We can
reduce this complexity by storing keys in red–black trees. For each term of a Poisson series, we store
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Figure 1: Red–black tree for representing a Poisson series P belonging to P10,12, being P =
x21x7 cosφ1 − 4x2 sin(φ1 − φ7)− cos(φ1 + φ5 − φ4).

pairs (ν, iν) and (ν, jν). Distinction between angular and polynomial variables can be established
taking polynomial variables for values of the index between 1 and n, and angular variables for
values of the index between n+ 1 and n+m. Thus, the complexity of comparison between terms
is reduced from O(n+m) to O(log2(n+m)) in the worst case scenario.

If the keys associated to two different terms belonging to different Poisson series have different
size, that means that both terms are not equal and can not be collected. This fact helps also to
reduce the computation time. Moreover, it is not necessary to compare the entire key in case one
index fails.

Thus, from a computational point of view, a Poisson series will be represented by a red–black
tree with keys stored in red–black trees. In Figure 1, we show the representation of Poisson series

P = x21x7 cosφ1 − 4x2 sin(φ1 − φ7)− cos(φ1 + φ5 − φ4) ,

just to clarify the way red–black trees are used to store a Poisson series.
In the following section, we will anaylise the complexity of the most basic algorithms to be

implemented in a Poisson series processor.

5 Basic manipulation of Poisson series

5.1 Addition and substraction of Poisson series

Let us consider two Poisson P and Q series containing N terms each of them. The implementation
of this algorithm in a list structure requires: concatenating both lists (O(1)), sorting the resulting
structure (O(N log2N)), and collecting like terms (O(N)). The Quicksort algorithm has an average
complexity of O(N log2N), but in the worst case scenario, the complexity is O(N2), and this case
happens when the initial list is already ordered. When adding two Poisson series, both lists are
initially sorted after being concatenated. Thus, the resulting list is quasi–sorted, and the complexity
of the sorting algorithm results to be closer to O(N2) than to O(N log2N).

If both series are stored in a red–black tree, addition (or substraction) of Poisson series implies
insertion of each term of Q in P : insertion when the key of the term is not contained in Q, and
modification if the key of the term is contained in Q. In both cases, the complexity is O(log2N)
for each term. Thus, complexity is O(N log2N). This algorithm provides the best case when all
terms of Q appear also in P , with a complexity of O(N log2N). In the worst case scenario, the

complexity is
∑N
i=1 log2(N+ i) = O(N log2(N)). This occurs when all terms of Q must be inserted

in P as new elements.
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5.2 Multiplication of Poisson series

Let us consider two Poisson series P and Q with NP and NQ terms respectively. The multiplication
of these two series can adopt the form of a Poisson series taking into account the following relations:

2 cosλ cosµ = cos(λ+ µ) + cos(λ− µ) , 2 sinλ sinµ = cos(λ− µ)− cos(λ+ µ) ,
2 sinλ cosµ = sin(λ+ µ) + sin(λ− µ) , 2 cosλ sinµ = sin(λ+ µ)− sin(λ− µ) ,

which can be applied when λ = in+1φ1 + · · · + in+mφm and µ = i′n+1φ1 + · · · + i′n+mφm. The
implementation of this algorithm with a list structure has a complexity of O(N2M2(n+m)). For
each term of series P , we have to visit each term in Q and then, compute and insert the resulting
terms in the product series.

If we use a structure base on red–black trees, the cost of the insertion is then log2 (NM) instead
of NM . So, the total complexity is reduced to O(NM log2 (NM) log2(n+m)).

6 Conclusions

We have analysed how the adoption of a red–black tree structure to store Poisson series can reduce
the computational cost of basic algorithms, as addition and multiplication of Poisson series. This
structure leads to best computational times because basic operations like searching, insertion and
deletion have logarithmic cost.
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Normal Forms of Singular Plane Quartics
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Abstract

It is well-known that a variety of moduli of singular plane quartics has the dimension
which is not greater than five. We will show the process which get the normal forms and
try to construct normal forms for homogeneous polynomials of the defining equations. And
moreover we show their restrictions by using the Gröbner basis of the elimination ideal.

Let M-dimf be the dimension of variety of moduli of the curve defined by the normal form.
Then we obtain the following 23 types of forms as the normal forms of irreducible singular
plane quartics.

Type M-dimf (A) Total sum of sing.(B) A + B
IIIn 5 1 6
IIIl 4 2 6
IIIg 3 3 6
IIIn 4 1 5
IIIl 3 2 5
IIIg 2 3 5
IIIm 4 2 6
IIId 0 6 6
IIIe 1 5 6
IIIj 2 4 6
IIIf 2 4 6
IIIk 3 3 6
IIIi 3 3 6
IIIb 1 5 6
IIIc 2 4 6
IIIh 2 4 6
IIIa 1 5 6
II 1

2b
0 6 6

IIa 1 5 6
Ia 0 6 6

II 1
2a

2 4 6

IIb 1 5 6
Ib 0 6 6

For all types of the above irreducible singular plane quartics, (M-dimf )+(Total sum of
Milnor numbers of the singularities) =6or 5.

Keywords
Singular plane quartics, Normal forms, Gröbner Basis
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Seeking recursion operators – an universal hierarchy example

in dimension (2 + 1)
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Abstract

Integrability is one of the key notions in the theory of nonlinear partial differential equa-
tions. Although several definitions may be given, the commonly accepted sign of integrability
is the existence of an infinite hierarchy of (possibly nonlocal) symmetries and/or conservation
laws of the equation in question. Such a hierarchy may be revealed by the use of the (local or
nonlocal) recursion operator, which also may be considered as an attribute of the integrability.

In this talk, we focus on the (2+1)-dimension universal hierarchy [3] equations of the form

utx = uxyuy − uyyux

discussed in [5], resp.
uyy = uyutx − uxuty

investigated by [4].
According to [2] technique, an algorithmic approach to seek for recursion operators, which

is applicable to nonlinear PDE’s or systems regardless of the number of space variables, we
used Jets library [1] to find recursion operators and appropriate nonlocal structures of the
equations above.

To obtain the result, heavy computations were run, owing to support of parallelism in Jets,
partially distributed to a simple computer cluster, which arrangement we briefly discuss. In
comparison to (1 + 1) dimension, there is an extreme increase in memory usage (dozens of
gigabytes) and processor time (a few weeks) consumation.

Keywords
Nonlinear partial differential equation, integrability, symmetry, conservation law, recursion

operator, JETS, distributed computing

References

[1] Hynek Baran, Michal Marvan, Jets. A software for differential calculus on jet spaces and
diffieties. http://jets.math.slu.cz

[2] Iosif Krasil’shchik, Alexander Verbovetsky, Raffaele Vitolo, A unified approach to com-
putation of integrable structures, arXiv:1110.4560 [nlin.SI]

[3] Mart́ınez Alonso L., Shabat A.B., Hydrodynamic reductions and solutions of a universal
hierarchy. Theor. Math. Phys., 2004,140, 10731085

[4] Oleg I. Morozov, A Recursion Operator for the Universal Hierarchy Equation via Cartan’s
Method of Equivalence, arXiv:1205.5748 [nlin.SI]

[5] Valentin Ovsienko, Bi-Hamiltonian nature of the equation utx = uxyuy − uyyux,
arXiv:0802.1818 [nlin.SI]

83



The algebra of polynomial integro-differential operators and

its group of automorphisms
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Abstract

The talk is about general properties of the algebra of polynomial integro-differential oper-
ators In := K〈x1, . . . , xn, ∂

∂x1
, . . . , ∂

∂xn
,
∫
1
, . . . ,

∫
n
〉.

We show that the algebra In is a prime, central, catenary, self-dual, non-Noetherian algebra
of classical Krull dimension n and of Gelfand-Kirillov dimension 2n. Its weak dimension is
n, and n ≤ gl.dim(In) ≤ 2n. All the ideals of In are found explicitly, there are only finitely
many of them (≤ 22n), they commute (ab = ba) and are idempotent ideals (a2 = a). An
analogue of the Hilbert’s Syzygy Theorem is proved for In. The group of units of the algebra
In is described (it is a huge group). A canonical form is found for each integro-differential
operators (by proving that the algebra In is a generalized Weyl algebra). All the mentioned
results hold for the Jacobian algebra An (but GK(An) = 3n, note that In ⊂ An). It is proved
that the algebras In and An are ideal equivalent.

The group Gn of automorphisms of the algebra In is found:

Gn = Sn n Tn n Inn(In) ⊇ Sn n Tn n GL∞(K) n · · ·n GL∞(K)︸ ︷︷ ︸
2n−1 times

,

G1 ' T1 n GL∞(K),

where Sn is the symmetric group, Tn is the n-dimensional torus, Inn(In) is the group of inner
automorphisms of In (which is huge). It is proved that each automorphism σ ∈ Gn is uniquely
determined by the elements σ(xi)’s or σ( ∂

∂xi
)’s or σ(

∫
i
)’s. The stabilizers in Gn of all the

ideals of In are found, they are subgroups of finite index in Gn. It is shown that the group Gn

has trivial centre. For each automorphism σ ∈ Gn, an explicit inversion formula is given via
the elements σ( ∂

∂xi
) and σ(

∫
i
).

Keywords
The algebras of polynomial integro-differential operators, the group of automorphisms, the

canonical form, the Jacobian algebras.
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Darboux theory of integrability in the sparse case

Guillaume Chèze
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Abstract

In 1878, G. Darboux has given a strategy to find first integrals of a derivation D =∑n
i=1Ai(X1, . . . , Xn)∂Xi . One of the tools developed by G. Darboux is now called Darboux

polynomials.
A polynomial f is said to be a Darboux polynomial, if D(f) = g.f , where g is a polynomial.
The polynomial g is called the cofactor.
G. Darboux has shown that if the derivation D has degree d and at least

(
n+d−1
n

)
+ 1 irre-

ducible Darboux polynomials then D has a first integral which can be expressed by means of
these polynomials.
In 1979, J.-P. Jouanolou has proved, that if a derivation has at least

(
n+d−1
n

)
+ n irreducible

Darboux polynomials then the derivation has a rational first integral. We recall that a rational
first integral is a first integral which belongs to C(X1, . . . , Xn).

These results are given in terms of the degree of the polynomial vector field. Here we
show that we can get the same kind of results if we consider the size of a Newton polytope
associated to the vector field. We recall that the Newton polytope of a Laurent polynomial
f(X) =

∑
α cαX

α, where X = X1, . . . , Xn and α is a multi-index (α1, . . . , αn) ∈ Zn, is the
convex hull in Rn of the exponent α of all nonzero terms of f . We denote this polytope by
N (f).

Theorem 1. Let D =
∑n
i=1Ai(X1, . . . , Xn)∂Xi be a derivation. Consider generic values

(x1, . . . , xn) in Cn and the polytope ND = N
(∑n

i=1 xi
Ai
Xi

)
.

Let B be the number of integer points in ND ∩ Nn, then

1. if D has at least B + 1 irreducible Darboux polynomials then D has a first integral,

2. if D has at least B+n irreducible Darboux polynomials then D has a rational first integral.
Furthermore, this bound is optimal.

We can remark that this result gives the classical bounds in the dense case.

Keywords
Darboux theory of integrability, Newton polytope
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Isomorphisms and Serre’s reduction of linear functional

systems
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Abstract

Within the algebraic analysis approach to linear systems theory, a behaviour is the dual
of the left module finitely presented by the matrix of functional operators defining the lin-
ear functional system. In this talk, we give an explicit characterization of isomorphic finitely
presented modules, i.e., of isomorphic behaviours, in terms of certain inflations of their presen-
tation matrices. Fitting’s theorem (see [3] and references therein) on the syzygy modules can
be found again. If one of the presentation matrix has full row rank, this result yields a charac-
terization of isomorphic modules as the completion problem characterizing Serre’s reduction,
i.e., the possibility to find a presentation of the module defined by fewer generators and fewer
relations, and thus an equivalent representation of the behaviour defined by fewer equations in
fewer unknown functions (see [1] and references therein). This completion problem is shown
to induce different isomorphisms between the modules finitely presented by the matrices defin-
ing the inflations. Applications to doubly coprime factorizations are given. Finally, we will
show that Serre’s reduction implies the existence of a certain idempotent endomorphism of
the finitely presented module, i.e., a particular decomposition problem (see [2]), proving the
converse of a result obtained in [4].

Keywords
Multidimensional linear systems, algebraic analysis, isomorphic D-modules, Serre’s reduction
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Qualitative Study of Polynomial Differential Systems
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Abstract

We develop an algorithmic method based on Gröbner bases in qualitative study of polyno-
mial differential systems with coefficients in a field of characteristic zero. We will give examples
in the case of quadratic differential systems.

Keywords
Polynomial differential systems, invariant, covariant, qualitative study, Gröbner bases, generators

system, linear transformations, normal form.

1 Motivation

The polynomial differential systems are objects of numerous scientific investigations . They play
a prominent role in medecine, biology, engineering, physics, economics, and other disciplines. The
invariant theory [7, 11, 6] is one of the most important tools used in the qualitative study of
polynomial differential systems. This theory allows to characterize geometric properties of a given
differential systems under the action of a given linear group of transformations, with the help
of algebraic or semi-algebraic relations depending on the coefficients of these systems. Thus the
theory of invariants is proven useful in the qualitative studies of polynomial differential systems,
in particular to establish invariant conditions in relation to the given group of transformations,
that give the existence and the nature of singular points, and characterize normal forms or the
number of complete curves etc. The Einsteins notation [14] in the polynomial differential systems
played an important role in the qualitative survey of these systems. In the case where the algebra
of invariants is of finite type, the Aronhold idendities [11] based on the fondamental theorem of the
ivariants with respect to the general linear group and using computation of determinants, gives us
a symbolic method to express invariants [14]. In [2] one give an alternative method based on the
test of membership in an ideal using Groebner bases and in [3] one develop an algorithmic method
to describe the algebra of the algebraic invariants with respect to the general linear group. The
computation of invariants, however still difficult. Indeed, even for planar quadratic differential
systems, the invariants are polynomials of 12 indeterminates. The Computer algebra Become
an indispensable means when using the theory of invariants. Indeed, the qualitative study of
polynomial differential systems leads on algebraic systems. Groebner basis is one of the main
practical tools for solving systems of polynomial equations and computing algebraic varieties [5].
Many works are devoted to solving algebraic systems ([8, 9, 12]). The spectacular progress of
the computer algebra and the efficient of the software( Maple, Magma, Singular etc) motivate
our work. Our aim is to show the role of Gröbner bases in qualitative study of the differential
polynomial systems. One give examples in the case of planar quadratic systems.

2 Preliminaries

Using Einstein’s notation (see e.g. [14]), the complete polynomial differential systems of finite
dimension n and of degree at most k with coefficients in a field k of characteristic zero can be
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written as

dxj

dt
= aj + ajα1

xα1 + ajα1α2
xα1xα2 + ajα1···αrx

α1 · · · xαr , j, α1, αr ∈ {1, . . . , n}, 1 ≤ r ≤ k, (1)

where for j = 1, . . . , n and for 2 ≤ r ≤ k, the tensor ajα1···αr (1 time contravariant and r times co-
variant) is symmetric with respect to the lower subscripts. Let S be the set of all coefficients on the
right hand side and x = (x1, . . . , xn) be the vector of the unknown variables of (1). Let G be a group
of linear transformations of the phase space kn of the systems (1). The group can be the general
linear group GL(n, k), the group of translations T (n, k) or their product T (n, k)×GL(n, k).When
using the invariant theory in the qualitative study of differential systems we transform these sys-
tems to systems whose coefficients are invariant with respect to the linear group.

2.1 Definition

A polynomial function C : S × kn → k is a covariant with respect to the group G, or G-covariant
if there exists a character λ of the group G, such that ∀q ∈ G,∀a ∈ S,C(ρ(q)a, qx) = λ(q)C(a, x),
where ρ is a representation of the considered group. If λ ≡ 1, the covariant is said to be absolute,
otherwise it is said to be relative. In the case of the linear group GL(n,k), λ(q) = det(q)−κ , where
κ is an integer ([7, 14]) called the weight of the covariant C(a, x). If the polynomial C(a, x) is
independent of x, then it is said to be a G- invariant.

2.2 Definition

A G-covariant C(a, x) is said to be reductible if it can be expressed as a polynomial function of
G-covariants of lower degree. If C(a, x) is reductible, we write C(a, x) ≡ 0 (modulo G-covariants
of lower degree).

2.3 Definition

A finite family B of G-covariants of (1) is called a system of generators if any G-covariant of (1)
can be expressed as a sum of products of constants and elements in B.

2.4 Definition

A finite family B of G-covariants of the system (1) is a system of generators of the G-covariants
of the system if every G-covariant of (1) is reductible to zero modulo B.

2.5 Definition

A system B of generators is said to be minimal if none of them is generated by the others.
The GL(n, k)-covariants of (1) are called central-affine covariants. One recall the two fonda-

mental results about central-afine invariants.

2.6 Theorem([11])

The algebra k[x]GL(n,k) of central-affine covariants of (1) is of finite type.

2.7 Theorem of Gurevich([10])

Any system of generators of central-affine covariants of (1) is made up of polynomial expressions
of the coefficients of these systems and the vector x obtained from the tensorial operations of
alternation or total contraction.

3 Groebner Bases of Central-Affine Covariants

3.1 Corollary

A central-affine covariant C of differential systems (1) is a tensor of

(T 1
0 )⊗d0 ⊗ (T 1

1 )⊗d1 ⊗ · · · ⊗ (T 1
s )⊗dr ⊗ k⊗δ, 1 ≤ r ≤ k,
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obtained from alternation or total contraction, where for r = 1, . . . , k, T 1
r denotes the space of

tensors 1 time contravariant and r times covariants. (T 1
r corresponds to the homogenous part of

degree r of the polynomials of the right hand side of systems (1)).
This corollary is the consequence of the fondamental theorem of Gurevich. It motivates the fol-
lowing definitions.

3.2 Definition

A central-affine covariant of (1) is said to be of type (d0, d1, , . . ., dr, δ) if it is homogeneous of
degree d0 in relation to aj , of degree d1 in relation to ajα, ..., of degree dr in relation to ajα1···αr and
of degree δ in relation to the contravariant vector x.

3.2.1 Examples

I = aαα the trace of the matrix a which corresponds to the linear part of (1), J = aαpra
β
βqa

γ
γsa

δ
αδε

pqεrs

(where εpq = q− p, εrs = s− r and n = 2) are central-affine covariants of (1) of type (0, 1, 0, . . . , 0)
and (0, 0, 4, . . . , 0), respectively.

3.3 Definition

A monomial associated with (1) is a finite product of the form

(aj)p0(ajα1
)p1(ajα1α2

)p2 · · ·(ajα1···αr )
prxα, 1 ≤ r ≤ k

where for α = (δ1, . . . , δn) ∈ Nn, xα denotes the product (x1)
δ1 · · ·(xn)

δn
.

We define on the set of all monomials denoted by M the usual product.

(aj)p0(ajα1
)p1(ajα1α2

)p2 · · ·(ajα1···αr )
prxδ × (aj)q0(ajα1

)q1(ajα1α2
)q2 · · ·(ajα1···αr )

qrxµ

=
(aj)

p0+q0
(ajα1

)
p1+q1

(ajα1α2
)
p2+q2 · · ·(ajα1···αr )

pr+qr
xδ+µ

By treating the tensorial coefficients as ‘alphabets’, one define a total lexicographic ordering for the
set M in the usual manner (see e.g. [15, pp. 373-375]). It’s easy to verify the following theorem.

3.4 Theorem

For any polynomial differential system (1) the ideal of central-affine covaraints of these systems
has a Gröbner basis.

Let F be a given system of generators of the ideal I of central-affine covariants of (1). The
Hilbert’s basis theorem implies that F is finite. The fondamental theorem of the central-affine
covariants of (1)offer us a constructive method to compute this generating family. Starting from
F using the Buchberger’s criterion [5] one construct a groebner basis of this ideal denoted B. B
will be said groebner basis of central-affine covariants of (1).

4 Qualitative Study of Polynomial Differential Systems

The action of the group GL(n, k) on kn : (q, x) 7→ qx, induces a representation of group,

ρ : GL(n, k) −→ GL(S)

defined by ρ(q)(aj) = qji a
i and ρ(q)(ajα1···αr ) = qji p

j1
α1
· · ·pjrαraij1···jr where j, α1, . . . , αr ∈ {1, . . . , n},

r = 1, . . . , k, and q is a matrix of GL(n,k) and p its inverse.

Let q be a given matrix in GL(n, k). Systems (1) can be transformed into the following systems,

dxj

dt
= bj + bjα1

xα1 + bjα1α2
xα1xα2 + bjα1···αrx

α1 · · · xαr , j, α1, αr ∈ {1, . . . , n}, 1 ≤ r ≤ k, (2)

where for j = 1, . . . , n and for 2 ≤ r ≤ k, bj = ρ(q)(aj) and bjα1···αr = ρ(q)(ajα1···αr ).
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Starting from systems (2) we caracterise normal forms of the given differential systems (1). We
illustrate our idea by mean of the complete planar quadratic differential systems.

dxj

dt
= aj + ajα1

xα1 + ajα1α2
xα1xα2 , j, α1, α2 ∈ {1, 2} (3)

The ideal of the central-affine covariants of these systems is generated [1, 14] by the family F =
{I1, ..., I16,K1, ...,K33}.

4.1 proposition

If I9 6= 0 the systems (3) can be transformed into new polynomial differential systems with invariant
coefficients with respect to the group GL(n,R).
Indeed, under the matrix q defined by q1u = aααu and q2u = 1

I9
aααra

β
sua

γ
βγε

rs the systems (3) can be
transformed into the systems

dxj

dt
= bj + bjα1

xα1 + bjα1α2
xα1xα2 , j, α1, α2 ∈ {1, 2} (4)

where coefficients of the new systems (4) are depending on the coefficients of the systems (3)
and the elements of the matrix q. It’s easy to check with the help of the definition of central-
affine covariants that the new coefficients are invariant. Since I1, ..., I36 are still invariant under
any centro-affine transformation, they are invariant under the transformation q. Hence, We may
compute
I1 = b11 + b22, I3 = b21b

1
22 − b12b111, I4 = −b12, I7 = b122(b111 − b212), I9 = b122,

I13 = b122(b22b
2
12 − b11b111), I15 = −(b122)2b211, I17 = b1, I26 = b2b122. (5)

We follow the idea in [14, Lemma 17.2], and then solve for

b1 = I17, b
2 =

I26
I9
, b11 =

I1(I9 − I7)− 2I13
2I9

, b12 = −I4, b21 =
2I3I9 − I4(I7 + I9)

2I29
, b22 =

I1(I7 + I9) + 2I13
2I9

,

and

b111 =
I7 + I9

2I9
, b112 = 0, b122 = I9, b

2
11 = −I15

I29
, b212 =

I9 − I7
2I9

, b222 = 0.

which are invariant and then they determinate a normal form of the quadratic systems (3) since
all the new coefficients are expressed in terms of {I1, ..., I26} of elements of our generating family
F . Then we are able to study these differential systems with the help of the invariant theory.
Let return to our differential systems (1). Starting from a generating family F = {f1, ..., fs} of the
ideal of the central-affine covariants of these systems one compute a groebner basis B, using an
appropriate monomial order. One choose an invertible matrix which transforms systems (1) into
new systems (2) which coefficients are invariant under the action of the linear group and compute
each element of F in terms of the new coefficients of the transformed systems and then lead to an
algebraic system of at most s equations,

f1 = P1(b1, ..., bnn,...,n), ..., fs = Ps(b
1, ..., bnn,...,n). (6)

where the indetrminates are the new coefficients of the transformed systems (2). A normal form
is obtained by solving (6), then expressing each new coefficient in the ideal < F >. Now we are
able to give an algorithm that determinates a normal form of a given system (1).

4.2 Algorithm

• Step 1. Enter an invertible matrix q and a finite generating family F = {f1, f2, . . . , fs} of
central-affine covariants of (1)

• Step 2. Order M by a monomial order.

• Step 3. Deduce from F a groebner basis B

• Step 4. Transform the systems (1) under the matrix q into new systems (2).
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• Step 5. If the new coefficients are central-affine covariant go to step 6 else choose another
matrix and go to step 1.

• Step 6. Compute the elements of the generating family F in terms of the new coefficients of
systems (2) then lead to the algebraic system (6).

• Step 7. Express the new coefficients in < F > when solving (6) with the help of groebner
basis.

• Step 8. Return a normal form.

5 Conclusion

The computation of invariants of differential polynomial systems (1) is not easy. However, the
Groebner bases can play a role in the development of the qualitative study of differential systems
of finite dimension with coefficients in a field of caracteristic zero, with the help of an efficient
software. It’ll be interesting to develop an algorithm using groebner bases to study the existence
and the nature of singular points for a given polynomial differential system with coefficients in the
field of the complex numbers, the cubic systems for example.
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Princeton University Press, 1947.

[14] C. S. Sibirskii, Introduction to the Algebraic Theory of Invariants of Differential Equations,
Nonlinear Science, Theory and Applications, Manchester University Press, 1988.

[15] J. L. Mott, A. Kandel and T. P. Baker, Discrete Mathematics for Computer Scientists and
Mathematicians, Prentice Hall, 1986.

91



Periodic and Mean-Periodic Solutions
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Abstract

A review of our operational calculus approach to obtaining periodic and mean-periodic
solutions of LODE with constant coefficients is presented.

Let P (λ) = a0λ
n + a1λ

n−1 + · · · + an−1λ + an be a non-zero polynomial with constant
coefficients of degree n and let us consider an ordinary linear differential equation of the form:

P

(
d

dt

)
y = f(t), −∞ < t <∞ (1)

Let Φ be a linear functional on C(IR). We are looking for solutions of (1) which satisfy the
relation

Φ {y(t+ τ)} = 0 (2)

for all t ∈ IR, i.e. for mean-periodic solutions of (1) with respect to the functional Φ.
A necessary condition for existence of a mean-periodic solution y(t) of (1) is the requirement

the right hand side function f(t) to be also mean-periodic.
It is shown that the condition (2) may be replaced by a finite number of nonlocal BVCs of

the form
Φ
{
y(k)

}
= 0, k = 0, 1, 2, . . . , degP − 1

The problem for determining of the periodic and antiperiodic solutions of (1) with period
T is a special kind of this problem.

We develop a Mikusinśki type operational calculus (see [1], [2]) based on the non-classical
convolution

(f ∗ g)(t) = Φτ





t∫

τ

f(t+ τ − σ)g(σ)dσ



 . (3)

It happens that the Φ – mean-periodic functions form an ideal on the convolution algebra
(C(IR), ∗). This fact is used for obtaining of the Φ – mean-periodic solutions of (1) in explicit
form, both in the non-resonance and in the resonance cases.

A Heaviside type algorithm for obtaining periodic solutions (in the non–resonance and
resonance cases) is presented (see [3]). Examples of computation of such solutions in the
environment of Mathematica system are included. A comparison with other known methods
is made.
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Looking for invariant algebraic curves
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Abstract

The problem of finding invariant algebraic curves for planar polynomial differential systems
ẋ = P (x, y), ẏ = Q(x, y) of degree d ∈ N is a classical one. The existence of invariant algebraic
curves is a very important matter in the theory of integrability. Darboux related the number
of such curves to the existence of a so-called Darboux first integral in the plane. After some
years these theorem of Darboux was generalized to count the number of invariant algebraic
curves and the number of exponential factors, see [Christpher-Llibre, 2000]. Indeed besides
the number of invariant algebraic curves, it is important to count the number of cofactors that
we can find. If we have at least

(
d+1
2

)
of them, then we can construct a Darboux or a Liouville

first integral.

Another important fact is that in order to compute the invariant algebraic curves of a
polynomial system it is important to know the expression of its cofactor, or to have the
maximum of information about it. If we know the expression of the cofactor then to find a
solution of equation (1) is (theoretically) easier.

In this work we deal with the problem of finding invariant algebraic curves of polyno-
mial differential systems on the plane and at the same time providing some techniques of
simplification of the cofactor that an invariant algebraic curve may have.

It is well-known that an algebraic curve f = 0 is invariant for system (P,Q) if it satisfies
the equation

Pfx +Qfy − kf = 0, (1)

for some (complex) polynomial k of degree at most d − 1. In [Gasull-Giacomini-Torregrosa,
2007] a method to compute invariant algebraic curves is introduced. This method starts from
knowing an analytic solution of the form z = y − α(x) = 0. If f = 0 is an invariant algebraic
curve of degree m ∈ N with cofactor k, then equation (1) can be written in powers of z:

d+m−1∑

j=0

(
j∑

i=0

[Pj−iF
′
i + (iQj−i+1 − iα′Pj−i+1 −Kj−i)Fi]

)
zj = 0, (2)

where

f(x, z + α(x)) =
∑

i≥0

Fi(x)zi, k(x, z + α(x)) =
∑

i≥0

Ki(x)zi,

P (x, z + α(x)) =
∑

i≥0

Pi(x)zi, Q(x, z + α(x)) =
∑

i≥0

Qi(x)zi.

Our approach to this method uses the change of variables (x, y) = (u, 1)/v, after which we
obtain the polynomial system u̇ = X(u, v), v̇ = Y (u, v) of degree d+1. Now v = 0 is invariant
for the new system (X,Y ) and the above method can be applied using this solution (indeed,
we have α ≡ 0). Equation (2) becomes

d+m∑

j=0

(
j∑

i=0

[Xj−iF
′
i + (iYj−i+1 −Kj−i)Fi]

)
vj = 0. (3)

Hence we need to solve a system of ODE in the variable u.

It is also important, in the search of invariant algebraic curves, to know the expression
of the cofactor as much as possible. We introduce in our work some techniques in order to
know whether some coefficients of the cofactor may be always zero, no matter the invariant
algebraic curve.

Finally, when dealing with all the ODE in (3) it is important to know under which con-
ditions the solutions of all these ODE are polynomial. We have structured a manner to face
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this problem in such a way that we do not need to solve the equations but we can obtain the
conditions on the coefficients for having polynomial solutions.

After the explanation of all these new approaches, we provide some examples to which we
apply our work. An immediate example of application of all these techniques is to prove that
a given polynomial differential system has no algebraic limit cycles.

The approach can be also used to determine whether a polynomial differential system has
a rational first integral or not.

Keywords
polynomial vector field, invariant algebraic curve, rational first integral
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Abstract

In recent works, the authors have considered Lagrangians invariant under a Lie group ac-
tion, in the case where the Lagrangian may be parametrized so that the independent variables
are each invariant under the action. We were able to calculate the Euler-Lagrange equations
for the invariants in terms of the standard Euler operator and a ‘syzygy’ operator specific to
the action and which is readily calculated. Further, we were able to obtain the linear space of
conservation laws in terms of vectors of invariants and the adjoint representation of a moving
frame for the Lie group action. This allowed us to simplify the calculation for the extremals
in the original variables, once the Euler-Lagrange equations for the invariants were solved, for
all three SL(2) and the standard SE(3) actions.

In this talk, we show how our ideas may be extended to cases where reparametrization of the
independent variables is difficult, impossible, or undesired. We take for our main expository
example the standard linear action of SL(2) on the two independent variables. This choice is
motivated by applications to variational fluid problems which conserve potential vorticity. We
note that Kogan and Olver previously handled the one-dimensional case using a variational
tricomplex.

Keywords
Variational problems, Invariant calculus of variations, Noether’s conservation laws, Moving frames
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Abstract

From Hermite interpolation, we know that there exists a unique polynomial of minimal
degree taking prescribed values and derivatives at finitely many points. In the context of
linear ordinary boundary problems and integro-differential operators, also more general linear
conditions appear naturally. These so-called Stieltjes boundary conditions are linear combi-
nations of point evaluations of derivatives (local conditions) and definite integrals with weight
functions (global conditions). In this talk, we study related interpolation problems. We show
in particular that for integral conditions with monomial weight functions together with Her-
mite conditions with two evaluation points there exists a unique interpolating polynomial of
minimal degree. We discuss ongoing work on various generalizations and also applications to
singular boundary problems.

Keywords
Interpolation, Integral Conditions, Stieltjes Conditions, Singular Boundary Problems
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Abstract

Let C be the field of complex numbers. We denote by O the ring C[[x1, . . . , xm]] of formal
power series in x = (x1, . . . , xm) over C. In this talk we consider the class of the so-called
completely integrable Pfaffian systems with normal crossings, that is , the class of linear systems
of partial differential equations in m variables and dimension n of the form





xp1+1
1

∂Y
∂x1

= A(1)(x)Y
...

xpm+1
m

∂Y
∂xm

= A(m)(x)Y

where A(1), . . . , A(m) are matrices with entries in O satisfying the integrability conditions

xpi+1
i

∂A(j)

∂xi
+A(j)A(i) = x

pj+1

j

∂A(i)

∂xj
+A(i)A(j).

The m-tuple (p1, . . . , pm) of nonnegative integers is called the Poincaré rank of the system.
Pfaffian systems arise in the studies of aerospace and celestial mechanics (see, e.g., [8]) and
by far the most important for applications are those with normal crossings (see, e.g., [11]).
The theoretical results from [9, 10] show that a fundamental matrix of formal solutions can
be written as

Φ(x
1/s1
1 , . . . , x1/sm

m )

m∏

i=1

xΛi
i

m∏

i=1

exp(Qi(x
−1/si
i )) (1)

where for 1 ≤ i ≤ m, si is a nonzero natural integer and

• Φ is an invertible meromorphic series in (x
1/s1
1 , . . . , x

1/sm
m ) over C;

• Qi is a diagonal matrix containing polynomials in x
−1/si
i over C without contant terms,

called exponential polynomial matrix ;

• Λi is a constant matrix commuting with Qi.

However, the formal reduction, i.e. the algorithmic procedure that computes the transforma-
tion which takes the system into its canonical form so that formal solutions can be constructed,
is a question of another nature.
The particular case, when m = 1, is the case of system of ordinary differential equations which
have been studied extensively (see, e.g., [2, 13] and references therein). Moreover, unlike the
case of m > 1, algorithms to related problems leading to the construction of the formal solu-
tions have been developed by various authors (see, e.g., [1, 3, 7, 12] and references therein).
The package ISOLDE [6] written in the computer algebra system Maple is dedicated to the
symbolic resolution of systems of ordinary linear differential equations and more generally
linear functional matrix equations.
For m = 2, a first step in formal reduction was set up in [4] where the problem of rank
reduction was tackled. As a second step, we give here an explicit method to compute the
exponential polynomial matrcies in the case of two variables. Upon changes of exponential,
our work reduces formal reduction to the task of constructing a basis of the C-space of regular
solutions (see, e.g., [5]). Moreover, it gives information on the formal invariants of the system.

Keywords
Linear Systems of Partial Differential Equations, Formal Solutions, Singular Points

This work is a part of my Ph. D. thesis which is in progress and jointly supervised by Pr.
Moulay Barkatou at the University of Limoges and Dr. Hassan Abbas at the Lebanese University.
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Abstract

We propose an algebraic framework for studying linear boundary problems for partial
differential equations. Our long-term plan is to apply this framework to linear differential
equations with constant coefficients, going through the following three stages:

1. The Cauchy problem for completely reducible operators.

2. The Cauchy problem for hyperbolic equations.

3. More general boundary problems for equations of various type.

In this talk we concentrate on (1), outline an algebraic strategy for (2), and round up with
some rough ideas towards (3).

Keywords
Linear partial differential equations, boundary problems, Green’s operators,

integro-differential algebras, integro-differential operators.
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Abstract

D’Alembertian functions can be characterized as nested indefinite integrals over hyperex-
ponential functions. The representation of d’Alembertian functions in terms of such nested
integrals is far from unique. We define a family of basis functions by restricting the hyper-
exponential functions occurring in the integrands. Based on this we obtain a canonical form
for d’Alembertian functions. We also exhibit the algebraic relations among d’Alembertian
functions. An algorithm for computing canonical forms of d’Alembertian functions and their
indefinite integrals will be given, which builds on corresponding results for hyperexponential
functions.

Keywords
D’Alembertian functions, Hyperexponential functions, Nested integrals, Canonical forms
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Abstract

This talk is about work in progress in collaboration with Thomas Cluzeau, Universite de
Limoges, and Alban Quadrat, Inria Saclay. We report on first steps of a study of certain
systems of nonlinear partial differential equations using a new algebraic analysis approach.
By applying module-theoretic techniques to a new kind of linearization of the given equations,
e.g., conservation laws of the given nonlinear system are computed. This approach relies
on methods of symbolic computation for both nonlinear and linear differential equations: a
preparatory step applies a decomposition technique as proposed by J. M. Thomas in the 1930s;
the linearized system is dealt with using a version of Janet’s algorithm performing normal form
computations for the symbolic coefficients of the linearization modulo the nonlinear system.

Keywords
Nonlinear partial differential equations, conservation laws, Thomas decomposition,

Janet bases, linearization, algebraic analysis
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Abstract

A matrix representation of the sparse differential resultant is the basis for efficient compu-
tation algorithms, whose study promises a great contribution to the development and applica-
bility of differential elimination techniques. It is shown how sparse linear differential resultant
formulas provide bounds for the order of derivation, even in the nonlinear case, and they also
provide (in many cases) the bridge with results in the nonlinear algebraic case.

Keywords
Differential resultant, sparse differential polynomial, super essential, algebraically essential

1 Introduction

Differential elimination is an important operation in differential algebraic geometry that, in the-
ory, can be achieved through Gröbner bases, characteristic sets and differential resultants. For
applications, sparse differential elimination is the operation that is naturally necessary. Sparse
algebraic resultants have been broadly studied, regarding theory and computation (see [2], [3], [8]
and references there in), meanwhile differential resultants were recently defined in [4] for sparse
Laurent differential polynomials.

The computation and applicability of sparse algebraic resultants attained great benefits from
having close formulas for their representation. Similar formulas in the differential case would im-
prove the existing bounds for degree and order of the sparse differential resultant and therefore the
existing algorithms for its computation. Matrix formulas would also contribute to the development
of methods to predict the support of the sparse differential resultant, achieving similar benefits
to the ones obtained in the algebraic case. In the differential case, these so called Macaulay style
formulas do not exist. The differential resultant formula defined by Carrà-Ferro in [1], is the alge-
braic resultant of Macaulay, of a set of derivatives of the ordinary differential polynomials in P.
Already in the linear sparse generic case, these formulas vanish often, giving no information about
the differential resultant ∂Res(P), and this was the starting point of my interest in this topic ([5],
[6]).

In [7], determinantal formulas are provided for systems of n linear nonhomogeneous (non nec-
essarily generic) differential polynomials P in a set U of n − 1 differential indeterminates. These
formulas are determinants of coefficient matrices of appropriate sets of derivatives of the differential
polynomials in P, or in a linear perturbation Pε of P, and allow the elimination of the differential
variables in U from P. In particular, the formula ∂FRes(P) is the determinant of a matrix M(P)
having no zero columns if the system P is “super essential”. As an application, if the system P is
sparse generic, such formulas can be used to compute the differential resultant ∂Res(P) introduced
in [4].

To approach the nonlinear case, one should observe that differential polynomials can be sparse
in degree and in order of derivation. One can start with the problem of taking the appropriate
set of derivatives of the elements in P to get a system of differential polynomials ps(P), that seen
as algebraic, should have L polynomials in L − 1 variables. For this purpose, we extend here the
“super essential” condition to non linear polynomials, taking into consideration the sparsity in the
order. Results obtained in the linear case can also be used to check, in some cases, the existence
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of the algebraic resultant of the generic system of algebraic polynomials whose specialization is
ps(P), providing a link with the machinery available in the sparse algebraic case.

2 Sparse differential resultant

Let D be an ordinary differential domain with derivation ∂. Let U = {u1, . . . , un−1} be a set of
differential indeterminates over D. By N we mean the natural numbers including 0. For k ∈ N,
we denote by uj,k the k-th derivative of uj and for uj,0 we simply write uj . We denote by {U}
the set of derivatives of the elements of U , {U} = {∂ku | u ∈ U, k ∈ N}, and by D{U} the
ring of differential polynomials in the differential indeterminates U , which is a differential ring
with derivation ∂. Given a subset U ⊂ {U}, we denote by D[U ] the ring of polynomials in the
indeterminates U . Given f ∈ D{U} and y ∈ U , we denote by ord(f, y) the order of f in the
variable y. If f does not have a term in y then we define ord(f, y) = −1. The order of f equals
max{ord(f, y) | y ∈ U}.

Let P := {f1, . . . , fn} be a system of differential polynomials in D{U}. We assume that:

(P1) The order of fi is oi ≥ 0, i = 1, . . . , n. So that no fi belongs to D.

(P2) P contains n distinct polynomials.

(P3) P is a nonhomogeneous system. At least one of the polynomials in P has nonzero degree
zero term.

Let [P] denote the differential ideal generated by P in D{U}. Our goal is to obtain elements of
differential elimination ideal [P] ∩ D, using differential resultant formulas.

Let us consider a generic system of nonhomogeneous sparse differential polynomials

P =

{
Fi := ci +

mi∑

h=1

ci,hMi,h | i = 1, . . . , n

}
,

ci and ci,h are differential indeterminates over Q, mi is the number of monomials of Fi, and Mi,h are
monomials in the variables {U}. Let us consider the differential field K = Q〈ci,h|i=1,...,n,h=1,...,mi

〉
and observe that P is a system in D{U}, with D = K{c1, . . . , cn}. If the differential elimination
ideal [P] ∩ D has dimension n − 1 then [P] ∩ D = sat(∂Res(P)), the saturated ideal determined
by a differential polynomial ∂Res(P), which is called the sparse differential resultant of P. Sparse
differential resultants were defined in [4], were their existence is proved to be equivalent with the
differentially essential condition on P.

3 A system ps(P) of L polynomials in L−1 algebraic variables

Given f ∈ D{U}, let us denote the differential support in uj of f by

Sj(f) = {k ∈ N | uj,k/M for some monomial M of f}.

Note that ord(f, uj) := maxSj(f) and define lord(f, uj) := minSj(f). For j = 1, . . . , n − 1, we
define the next positive integers, to construct convenient intervals bounding the differential support
sets Sj(fi),

γj(P) := min{oi − ord(fi, uj) | Sj(fi) 6= ∅, i = 1, . . . , n},
γ
j
(P) := min{lord(fi, uj) | Sj(fi) 6= ∅, i = 1, . . . , n}, (1)

Given j ∈ {1, . . . , n− 1}, observe that, for all i such that Sj(fi) 6= ∅ we have

Sj(fi) ⊆ [γ
j
(P), oi − γj(P)]. (2)

Finally, γ(P) :=
∑n−1
j=1 γj(P), with γj(P) := γ

j
(P) + γj(P).

Let N :=
∑n
i=1 oi. If N − oi − γ(P) ≥ 0, i = 1, . . . , n, the sets of lattice points Ii :=

[0, N − oi − γ(P)] ∩ N are non empty. We define the set of differential polynomials

ps(P) := {∂kfi | k ∈ Ii, i = 1, . . . , n}, (3)
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containing L :=
∑n
i=1(N − oi − γ(P) + 1) differential polynomials, whose variables belong to the

set V of L− 1 differential indeterminates

V := {uj,k | k ∈ [γ
j
(P), N − γj(P)− γ(P)] ∩ N, j = 1, . . . , n− 1}.

In general, given j ∈ {1, . . . , n− 1} we have

∪f∈ps(P)Sj(f) ⊆ [γ
j
(P), N − γj(P)− γ(P)] ∩ N, (4)

and we cannot guarantee that the equality holds. If there exists j such that (4) is not an equality,
we will say that the system P is sparse in the order.

Let xi,j , i = 1, . . . , n, j = 1, . . . , n− 1 be algebraic indeterminates over Q, the field of rational
numbers. Let X(P) = (Xi,j) be the n× (n− 1) matrix, such that

Xi,j :=

{
xi,j , Sj(fi) 6= ∅,
0, Sj(fi) = ∅. (5)

We denote by Xi(P), i = 1, . . . , n, the submatrix of X(P) obtained by removing its ith row. Thus
X(P) is an n× (n− 1) matrix with entries in the field K := Q(Xi,j | Xi,j 6= 0).

The notion of super essential system of differential polynomials was introduced in [7], for systems
of linear differential polynomials and it is extended here to the nonlinear case.

Definition 3.1 The system P is called super essential if det(Xi(P)) 6= 0, i = 1, . . . , n.

Given a super essential system P (non necessarily linear), it can be proved as in [7], Lemma
3.6 that N − oi − γ(P) ≥ 0, i = 1, . . . , n. Furthermore, the next result can be shown adapting the
proof of [7], Theorem 3.11 to the nonlinear case.

Theorem 3.2 If P is super essential then

∪f∈ps(P)Sj(f) = [γ
j
(P), N − γj(P)− γ(P)] ∩ N, j = 1, . . . , n− 1.

That is, P is a system of L polynomials in L− 1 algebraic indeterminates.

It can be proved as in [7], Section 4 that every system P contains a super essential subsystem
P∗ and if rank(X(P)) = n− 1 then P∗ is unique.

Example 3.3 Let us consider the systems P1 = {f1, f2, f3, f4} and P2 = {f1, f2, f3, f5} with

f1 = 2 + u1u1,1 + u1,2, f2 = u1u1,2, f3 = u2u3,1, f4 = u1,1u2, f5 = u1,2,

X(P1) =




x1,1 0 0
x2,1 0 0

0 x3,2 x3,3
x4,1 x4,2 0


 and X(P2) =




x1,1 0 0
x2,1 0 0

0 x3,2 x3,3
x4,1 0 0


 .

P1 is not super essential but since rank(X(P1)) = 3, it has a unique super essential subsystem,
which is {f1, f2}. P2 is not super essential and rank(X(P1)) < 3, super essential subsystems are
{f1, f2}, {f1, f3} and {f2, f3}.

4 Associated sparse algebraic resultant

We can establish a bijection between V and the set Y = {y1, . . . , yL−1} of L − 1 algebraic inde-
terminates. This can be extended to a ring homomorphism β : D[V] → D[Y ]. Monomials in D[Y ]
are Y α = yα1

1 · · · y
αL−1

L−1 with α = (α1, . . . , αL−1) ∈ NL−1. Given f ∈ D[V], we denote the algebraic

support A(f) of f , with β(f) =
∑
α∈NL−1 aαY

α, as A(f) :=
{
α ∈ NL−1 | aα 6= 0

}
.

We define the algebraic system of generic polynomials associated to P as

ags(P) =




∑

α∈A(f)

cα(f)Y α | f ∈ ps(P)



 ,
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where cα(f) are algebraic indeterminates over Q. Let us denote c(f) := c0(f), f ∈ ps(P), where 0
is the zero of NL−1.

Given a subsystem S ⊆ ags(P), let us define the fields

E := Q
(
cα(f) | f ∈ ps(P), α ∈ A(f)\{0}

)
, ES := E (f − c(f) | f ∈ S) .

As in [4], a subsystem of polynomials S of ags(P) is said to be algebraically independent if the
transcendence degree, of ES over E , trdeg(ES/E) = |S|, otherwise it is said to be algebraically
dependent. A subsystem of polynomials S of ags(P) is said to be algebraically essential if S is
algebraically dependent and every proper subsystem S ′ of S is algebraically independent.

Assuming that ∪f∈ps(P)A(f)\{0} spans ZL−1, it was proved in [8] that, a necessary and suffi-
cient condition for the existence of the algebraic resultant R of ags(P) is the existence of a unique
algebraically essential subsystem of ags(P).

Example 4.1 Let us consider the system P = {f1, f2} in D{u},

f1 = a2x+ (a1 + a4x)u+ u′ + (a3 + a6x)u2 + a5u
3,

f2 = x′ + (b1 + b3x)u+ (b2 + b5x)u2 + b4u
3,

with ai, bj algebraic indeterminates over Q, D = Q(t)[ai, bj ]{x} and ∂ = ∂
∂t . Since ps(P) =

{f1, f2, ∂f2}, with ∂f2 = x′′ + b3x
′u + (b3x + b1)u′ + b5x

′u2 + (2b5x + 2b2)uu′ + 3b4u
2u′ and

V = {u, u′}, we have the following system of algebraic generic polynomials in y1, y2

ags(P) =





P1 = c1(0,0) + c1(1,0)y1 + c1(0,1)y2 + c1(2,0)y
2
1 + c1(3,0)y

3
1 ,

P2 = c2(0,0) + c2(1,0)y1 + c2(2,0)y
2
1 + c2(3,0)y

3
1 ,

P3 = c3(0,0) + c3(1,0)y1 + c3(0,1)y2 + c3(2,0)y
2
1 + c3(1,1)y1y2 + c3(2,1)y

2
1y2




,

where cα,f1 , cα,f2 and cα,∂f2 are denoted by c1α, c2α and c3α respectively, α ∈ N2. Observe that ags(P)
is algebraically essential because the linear part of the polynomials in ags(P), {c1(0,0) + c1(1,0)y1 +

c1(0,1)y2, c
2
(0,0) + c2(1,0)y1, c

3
(0,0) + c3(1,0)y1 + c3(0,1)y2} is an algebraically essential system. Thus the

algebraic resultant R of ags(P) exists and it generates the algebraic ideal (ags(P)) ∩ Q[ciα | α ∈
A(fi), i = 1, 2, α ∈ A(∂f2), i = 3] = (R). Using ”toricres04”, Maple 9 code for sparse (toric)
resultant matrices by I.Z. Emiris, [2], we obtain a matrix M whose determinant is c3(0,0)R. This
matrix is the coefficient matrix of the polynomials

y1P1, y1y2P1, y1y
2
2P1, y

2
1P2, y1y2P2, y

2
1y2P2, y1y

2
2P2, y

2
1y

2
2P2, y1P3, y1y2P3, y1y

2
2P3, y1y

3
2P3

in the monomials y1, y
2
1 , y1y2, y

2
1y2, y1y

2
2 , y

2
1y

2
2 , y1y

3
2 , y

2
1y

3
2 , y1y

4
2 , y

2
1y

4
2 , y1y

5
2 , y

2
1y

5
2. The specialization

of the algebraic indeterminates {ciα | α ∈ A(fi), i = 1, 2, α ∈ A(∂f2), i = 3} in R, to the correspond-
ing coefficients of ps(P), gives a nonzero differential polynomial R in the differential elimination
ideal [P] ∩ D.

5 Some consequences from results in the linear case

Given a linear system P, differential resultant formulas were defined in [7], see also [5] and [6]. In
particular, if N − oi − γ ≥ 0, i = 1, . . . , n, the formula ∂FRes(P) is the determinant of the L× L
coefficient matrix M(P) of the set of polynomials ps(P) in the set of variables V. Furthermore,
if P is super essential, by Theorem 3.2 (which is [7], Theorem 3.11 in the linear case), the matrix
M(P) has no zero columns.

Let P be a linear system and let S = ags(P), which is also a linear system. For every subsystem
S ′ of S, let C(S ′) be the coefficient matrix of the homogeneous part of the polynomials in S ′ in the
variables Y , this is a |S ′|×L−1 matrix. Adapting the results in [7], Section 4 the next proposition
is proved.

Proposition 5.1 Let P be a super essential linear system and let S = ags(P). The following
statements hold:

1. Let Sl be the subsystem of S obtained by removing its lth polynomial, l = 1, . . . , L. S is
algebraically essential if and only if det(C(Sl)) 6= 0, l = 1, . . . , L.
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2. There exists an algebraically essential subsystem of S.

3. rank(C(S)) = |S| − 1 = L − 1 if and only if there exists a unique algebraically essential
subsystem S∗ of S.

Let P be a generic system of sparse linear differential polynomials. As a consequence of the
previous result, if ∂FRes(P) 6= 0 then ags(P) contains a unique algebraically essential subsystem
S∗, which corresponds to a subsystem of ps(P) that we call S∗. Let M(S∗) be the coefficient
matrix of S∗, which is |S∗| × |S∗|. The rows and columns of M(P) can be reorganized to obtain
a matrix
[
E ∗
0 M(S∗)

]
, such that ∂FRes(P) = ±det(E) det(M(S∗)), and ∂Res(P) = det(M(S∗)).

Using the previous results, a family of systems F of generic sparse differential polynomials
can be obtained, so that degree bounds of the sparse differential resultant can be given in terms
of mixed volumes. In [4], such bound was given for the case of generic non sparse differential
polynomials. Let lin(P) be the system of the linear parts of the polynomials in P. We define F
as the family of all systems of generic sparse differential polynomials in the variables {U} such
that the supports of the polynomials in ps(lin(P)) jointly span ZL−1 and ∂FRes(lin(P)) 6= 0, see
Example 4.1. For every P in F , ags(lin(P)) is algebraically essential and furthermore ags(P) is
algebraically essential, thus the algebraic resultant of ags(P) exists and it can be used to give
bounds of the degrees in terms of mixed volumes.

Acknowledgments: This work was developed, and partially supported, under the research project
MTM2011-25816-C02-01. The author belongs to the Research Group ASYNACS (Ref. CCEE2011/
R34).
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Abstract

In this extended abstract we characterize those cyclic codes for which its minimum distance
reaches the maximum of its BCH bounds. We also study a constructive point of view by means
of computations of divisors of a polynomial of the form xn − 1. We apply our results to the
study of those BCH codes C, with designed distance δ that have true minimum distance
d(C) = δ. Finally, we present some examples of new binary BCH codes with true minimum
distance. To do this, we make use of two related tools: the discrete Fourier transform and the
notion of apparent distance of a code, originally defined for multivariate abelian codes.

Keywords
Cyclic codes, BCH bound, apparent distance, true minimum distance

1 Introduction

To compute the minimum distance of cyclic codes, or a lower bound for them, is one of the most
studied problems in abelian codes (see, for example, [3, 5, 6]). The oldest lower bound for the
minimum distance of a cyclic code is the BCH bound [4, p. 151]. The study of this bound and its
generalizations is a classical topic, which includes the study of the very well-known family of BCH
codes. Whitin them, an interesting problem is to determine, for a given code, when the maximum
of its BCH bounds equals its minimum distance (see [2, 5]). This is our interest.

In this extended abstract we state conditions on a cyclic code for its minimum distance equals
the maximum of its BCH bounds. To do this, we make use of two related tools; to witt, the
discrete Fourier transform and the notion of apparent distance of a code, originally defined for
multivariate abelian codes in [1]. These tools and all notation are given in Section 2. In Section
3, we characterize those cyclic codes for which its minimum distance reaches the maximum of its
BCH bounds. Then we study a constructive point of view by means of computations of divisors
of a polynomial of the form xn − 1. In Section 4, we apply our results to the study of those BCH
codes C, with designed distance δ, that have true minimum distance d(C) = δ (see [5, Section
9.2]). Finally, some examples of new binary BCH codes with true minimum distance are presented.

2 Notation and preliminaries

We will use standard terminology from coding theory (see, for example [5, Chapter 7] or [2, Section
2]). We denote by q a power of a prime number p and by F = Fq the field of q-elements. Let n be
a positive integer which is coprime to q and let L/F an extension field containing a n-th primitive
root of unity, say α, that we fix throughout this note.

∗This work was partially supported by MINECO (Ministerio de Economı́a y Competitividad), (Fondo Europeo
de Desarrollo Regional) project MTM2012-35240 and Fundación Séneca of Murcia. The second author has been
supported by Departamento Administrativo de Ciencia, Tecnoloǵıa e Innovación de la República de Colombia
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We denote by F[x] the ring of polynomials with coefficients in F. For any polynomial g = g(x) ∈
F[x] we denote by deg(g) its degree and by supp(g) its support. Instead of working with group
rings, we consider the polynomial xn − 1 ∈ F[x] and form the quotient ring F[x]/(xn − 1), which
we denote by F(n). As usual, we identify the elements g ∈ F(n) with polynomials; so that we may
take g ∈ F(n) and then write g ∈ F[x] (where deg(g) < n). In case we first consider a polynomial
f ∈ F[x], possibly with deg(f) ≥ n, then we denote by f its image under the canonical projection
onto F(n).

A cyclic code C of length n in the alphabet F will be identified with its corresponding ideal in
F(n) (up to permutation equivalence). It is well known that, when gcd(n, q) = 1, the quotient ring
F(n) is semisimple and then every cyclic code has a unique monic generator polynomial [5, Theorem
7.1] and a unique generator idempotent [5, Theorem 8.1]. We always assume that gcd(n, q) = 1.

It is well known that every cyclic code C of F(n) is totally determined by its root set (or
the zeros of the code), which is defined as Z(C) =

{
αi | c(αi) = 0 for all c ∈ C

}
; that is, for

any polynomial f ∈ F(n), we have that f ∈ C if and only if f(β) = 0 for all β ∈ Z(C). We
denote the defining set of C as D(C) =

{
i ∈ Zn | αi ∈ Z(C)

}
[5, p. 199]. It is well-known that

defining sets are partitioned in q-cyclotomic cosets modulo n [5, p.104]; that is, denoting by Zn,
the integers modulo n, and given any element a ∈ Zn, the q-cyclotomic coset of a, modulo n is
the set Cq(a) = {a, qa, . . . , qna−1a}, where na is the smallest positive integer such that qnaa ≡ a
mod n. We recall that the notions of set of zeros and defining set are also applied to polynomials
in F(n).

For any code C, we denote its minimum distance by d(C). The BCH bound states that for any
cyclic code that has a string of δ − 1 consecutive powers of α as zeros, the minimum distance of
the code is at least δ [5, Theorem 7.8]. Clearly, for any cyclic code C there exists the maximum of
its BCH bounds, that we denote by ∆(C). Some times it is called the BCH (lower) bound of the
code (see [1, p. 22] and [2, p. 984]).

A cyclic code C of F(n), with polynomial generator g(x), is a BCH code of designed distance
δ if g(x) is the polynomial with the lowest degree over F having

{
αb+j | j = 0, . . . , δ − 2

}
⊆

Z(C) (see [5, p. 202]) or, equivalently if for any cyclotomic coset Q ⊆ D(C) we have that Q ∩
{b+ j | j = 0, . . . , δ − 2} 6= ∅. The Bose distance is defined for a BCH code C of designed distance
δ, as the largest δ′ such that C is a BCH code of designed distance δ′. Note that for a BCH code
C it may happens that its Bose distance being less that ∆(C), as the following example shows.

Example 1. Set q = 2, n = 31 and α a 31-th primitive root of unity. Let C be the BCH
code generated by lcm{M (15),M (16),M (17)}, where M (t), denotes the minimal polynomial of αt

in F[x]. Consider the 2-cyclotomic cosets C1 = {1, 2, 4, 8, 16}, C3 = {3, 6, 12, 17, 24} and C15 =
{15, 23, 27, 29, 30}. Then one may check that the defining set of the code C is D(C) = C1∪C3∪C15,
and that the Bose distance is δ = 4. However ∆(C) = 5, because {1, 2, 3, 4} ⊂ D(C). But
{1, 2, 3, 4} ⊂ C1 ∪ C3, so that C cannot be a BCH code of designed distance δ = 5. Hence the
Bose distance is less than the maximum of all possible BCH bounds (or simply, the BCH bound,
∆(C)).

Let L/F an extension field that contains a n-th primitive root of unity, α. The (discrete) Fourier
transform of a polynomial f ∈ F(n) (also called Mattson-Solomon polynomial), that we denote by

ϕf is defined as ϕf (x) =
∑n−1
j=0 f(αj)Xj . Clearly, ϕf ∈ L(n); moreover, the Fourier transform may

be viewed as an isomorphism of algebras ϕ : L(n) −→ (Ln, ?), where the multiplication “?” in Ln
is defined coordinatewise (see [1, Section 2.2] or [5, § 8.6]). The inverse of the Fourier transform is

given by ϕ−1g = 1
n

∑n−1
i=0 g(α−i)Xi (see for details any of [1, 2, 5]).

Let us recall some definitions in [1, Chapter 3] related to the computation of the BCH bound.
The context of these definitions is the study of multivariate polynomials, so, for the sake of sim-
plicity, we present a very simplyfied version only concerning univariate polynomials.

Definition 2. Let L/F an extension field that contains a n-th primitive root of unity, α. For any
element g ∈ L(n) we define the apparent distance of g, that we denote d∗(g), as follows.

1. If g = 0 then d∗(0) = 0.

2. If g 6= 0 then

d∗(g) = max
{
n− deg

(
xhg

)
| 0 ≤ h ≤ n− 1

}
.

Now, the apparent distance of a cyclic code C in F(n) with generator idempotent e ∈ C is
d∗(C) = d∗ (ϕe) and moreover
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∆(C) = d∗(C) = d∗ (ϕe) ≤ d(C) (1)

(see [1, p. 22]). As an immediate consequence we have.

Corollary 3. Notation as above. Let C be a cyclic code in F(n) with generator idempotent e ∈ C.
If d∗(ϕe) = ω(e) then d(C) = ∆(C).

3 The minimum distance and the BCH bound

We keep all notation of the preceding section. For an arbitrary element g ∈ L(n), which we may
view as a polynomial with deg(g) ≤ n− 1 and for any h ∈ {0, . . . , n− 1} we write

mg = gcd(xhg, xn − 1) (2)

where mg does not depend on h, because xh and xn− 1 are relatively prime polynomials. We also
write, for any h ∈ {0, . . . , n− 1}

xhg = (xn − 1)fg,h + xhg (3)

where fg,h is a suitable quotient from the division algorithm. Note that if g 6= 0 then xhg 6= 0
because deg(g) < n. By using results in [1] and [3] (see also [5, Theorem 8.6.31]) we may get the
following result.

Lemma 4. Let n, q, F and L be as above. Consider g ∈ L(n) and let mg be as above. Then

1. d∗(g) ≤ n− deg(mg).

2. If g | xn − 1 then d∗(g) = n− deg(g).

As a direct consequence we have the following result (see [1, Theorem 4.1] and [3, Theorem 2]).

Corollary 5. Let C be a cyclic code in F(n) and c ∈ C. Then

1. d∗ (ϕc) ≤ ω(c).

2. n− deg (mϕc
) = ω(c).

Then, by lemma above, the apparent distance of any f ∈ L(n) is less than or equal to the
number of nonzeros of mf . The following result shows us when the equality is reached.

Proposition 6. Let n, q, F and L be as above. Consider f ∈ L(n) and let mf be as in (2).

Then d∗(f) = n − deg(mf ) if and only if there exists h ∈ {0, . . . , n − 1} such that xhf | xn − 1

(equivalently, xhf and mf are associated polynomials in L[x]).

Now, our main result.

Theorem 7. Let n be a positive integer, p a prime number and q a power of p. Assume that
gcd(n, q) = 1. Consider the field F and an extension field L/F containing a n-th primitive root of
unity α. Let C be a cyclic code in F(n). Then d(C) = ∆(C) if and only if there exists a polynomial
f ∈ L(n), such that

1. d∗(f) = d∗(C).

2. d∗(f) = n− deg(mf )

3. ϕ−1f ∈ C.

Moreover, in this case, there exists h ∈ {0, . . . , n− 1} such that xhf | xn − 1.

Under a constructive point of view, the theorem above together with Proposition 6 shows us
that we only have to focus on the divisors of xn − 1. Let us state this fact in the following results
that we will use in the next section.

Corollary 8. Hypotheses as in Theorem 7. Let C be a cyclic code in F(n). Then d(C) = ∆(C)
if and only if there exists k ∈ {0, . . . , n − 1} and a divisor g | xn − 1, in L[x], such that setting

f = xkg, the following conditions hold.
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1. d∗(f) = d∗(C) (recall that d∗(f) = d∗(g)).

2. ϕ−1f ∈ C.

Example 9. Set q = 2, n = 45 and g = x40 +x39 +x38 +x36 +x35 +x32 +x30 +x25 +x24 +x23 +
x21 + x20 + x17 + x15 + x10 + x9 + x8 + x6 + x5 + x2 + 1. Let α be a 45-th primitve root of unity.
To find the parameter k in the corollary above, we have to compute g(1) and g(α3), because the
defining set of the polynomial (x45 − 1)/g is C2(0) ∪ C2(3). Since g(1) = 1 and g(α3) = α30 then
k = 15 works. That is, setting f = x15g we have that ϕ−1f ∈ F(45). Set C = (ϕ−1f ) and we have
that 5 = d(C) = ∆(C) and dim(C) = 21. In fact, C is a BCH code with δ = 5.

It is well-known that, under our notation, a ∈ L verifies that a ∈ F if and only if aq = a.

Corollary 10. Hypotheses as in Theorem 7. Let C be a cyclic code in F(n). Then d(C) = ∆(C)
if and only if there exists k ∈ {0, . . . , n−1} and a divisor g | xn−1, in L[x], such that the following
conditions hold.

1. d∗(g) = d∗(C), and setting f = xkg,

2. supp(f) ⊆ Zn \D(C),

3. (f(αj))q = f(αj), for any j ∈ {0, . . . , n− 1},
Now we give a sufficient condition to get BCH codes yielding its true minimum distance.

Corollary 11. Let C be a cyclic code in F(n) with generator idempotent e ∈ C. If there exists

h ∈ {0, . . . , n− 1} such that xhϕe | xn − 1 then d(C) = ∆(C).

4 Applications: true minimum distance in BCH codes

We keep all notation. The following result allows us to construct BCH codes B(δ), for which
d(B(δ)) = ∆(B(δ)) = δ. We recall that, for a given polynomial g ∈ F(n), it is denoted by (g) the
ideal in F(n) generated by g.

Proposition 12. Let g ∈ L[x] be a divisor of xn − 1. If ϕ−1
xkg

belongs to F[x], for some k ∈
{0, . . . , n− 1}, then the cyclic code C =

(
ϕ−1
xkg

)
verifies that ∆(C) = d(C).

Theorem 13. Let g ∈ L[x] be a divisor of xn − 1. If there exists k ∈ {0, . . . , n − 1}, such that

xkg(αj) ∈ F, for all j = 0, . . . , n−1 then there exists a BCH code of designed distance δ, C = B(δ)
(containing ϕ−1

xkg
) such that δ = ∆(C) = d(C) = n− deg(g).

For any couple of positive integers a, b, we denote by Oa(b) the multiplicative order of b, modulo
a. We also denote by φ(a) the Euler’s totient function.

Theorem 14. Let n be a positive integer, p a prime number and q a power of p. Assume that
gcd(n, q) = 1. Consider the field F and an extension field L/F containing a n-th primitive root of
unity α. Let h be an irreducible factor of xn−1 with defining set D(h). We set g = (xn−1)/h and
pick any j ∈ D(h). If g(αj) = αk then there exists a BCH code of designed distance δ, C = B(δ)
such that δ = ∆(C) = d(C) = deg(h).

Corollary 15. Let n = qm − 1, for some m ∈ N. For each divisor l of n, there exist φ(l)
Ol(q)

BCH

codes of designed distance δ = Ol(q) over F having true minimum distance δ.

Example 16. Set q = 2 and n = 15. Denote the irreducible factors by h1 = Φ1, h2 = Φ3,
h3 = x4 + x+ 1, h4 = x4 + x3 + 1 and h5 = Φ5.

Setting gi = xn−1
hi

we apply Theorem 14 above to get the following table of BCH codes of length
15 having true minimum distance δ.

Factor Dimension δ = d
g1 15 1
g2 10 2
g3 8 4
g4 8 4
g5 6 4
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Note that the codes associated to g2, . . . , g5 are not considered in the classical result [5, Theorem
9.2.5]. There are more nonconsidered codes. The polynomial g = Φ15Φ5 verifies the conditions of
Theorem 13 with k = 0, and hence it determines a BCH code, C6 having true minimum distance
δ, with parameters dim(C) = 5 and d(C) = 3 . Also Φ5Φ3h3 verifies the conditions of Theorem
13 with k = 0, and hence it determines a BCH code C7 having true minimum distance δ, with
parameters dim(C) = 7 and d(C) = 5.

Example 17. Set q = 2 and n = 21. Denote the irreducible factors by h1 = Φ1, h2 = Φ3,
h3 = x3 + x+ 1, h4 = x3 + x2 + 1, h5 = x6 + x4 + x2 + x+ 1 and h6 = x6 + x5 + x4 + x2 + 1

Setting gi = xn−1
hi

we apply Theorem 14 above to get the following table of binary BCH codes of
length 21 having true minimum distance δ. We complete with another one satisfying the conditions
of Theorem 13.

Factor Dimension δ = d
g1 21 1
g2 14 2
g3 12 3
g4 12 3
g5 8 6
g6 8 6
Φ21h3h1 10 6

We finish with an example of a binary BCH code with true minimum distance δ of length 33.
We have not found in the literature any binary BCH code having this length.

Example 18. Set q = 2, n = 33 and g = x30 +x27 +x24 +x21 +x18 +x15 +x12 +x9 +x6 +x3 + 1.
One may check that g verifies the conditions of Theorem 13 with k = 0, and hence it determines
a BCH code C having true minimum distance δ, with parameters dim(C) = 11 and d(C) = 3.
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Abstract
In this short paper, a link between Gröbner bases and linear codes over prime fields will

be established by associating to each linear code the so-called code ideal which is a binomial
ideal given as the sum of toric ideal and a non-prime ideal.

An algorithm using Gröbner basis techniques will be presented that computes a basis for
a subspace of a finite-dimensional vector space over a finite prime field given as a matrix
kernel which is an adaptation of the Gröbner basis based method used to calculate the Hilbert
basis of a numerical submonoid. Furthermore, results concerning the universal Gröbner basis
of the code ideals will be given. In particular, it will be shown that for binary codes the
universal Gröbner basis consists of all binomials associated to codewords whose Hamming
weight satisfies the Singleton bound and a particular rank condition. This will give rise to a
new class of binary linear codes called Singleton codes.

Keywords
Linear code, Gröbner basis, universal Gröbner basis, binomial ideal, toric ideal

1 Introduction

Digital data are exposed to errors when transmitted through a noisy channel. But as receiving
correct data is indispensable in many applications, error-correcting codes are employed to tackle
this problem. By adding redundancy to the messages, errors can be detected and corrected. Since
the late 1940’s the study of such codes is an ongoing and important task.

Gröbner bases, on the other hand, are a powerful tool that has originated from commutative
algebra providing a uniform approach to grasp a wide range of problems such as solving algebraic
systems of equations, ideal membership, and effective computation in residue class rings modulo
polynomial ideals [1, 2]. Additionally, Gröbner basis techniques also provide means of solving
problems in integer programming and invariant theory.

Both disciplines can be linked by associating a linear code over a prime field with a binomial
ideal given as the sum of a toric ideal and a non-prime ideal called code ideal. In this way, several
concepts from the rich theory of toric ideals can be translated into the setting of code ideals. This
idea stems from [4] and has already proven its value in the binary case as it allows for determining
the error-corrrecting capabilities of a binary linear code.

In this short paper, some connections between Gröbner bases and linear codes over prime fields
will be established. As a first application we will give an algorithm using Gröbner basis techniques
which computes a basis for a subspace of a finite-dimensional vector space over a finite prime field
given as a matrix kernel [5]. In fact, this algorithm is an adaptation of the Gröbner basis based
method used to calculate the Hilbert basis of a numerical submonoid [10]. This is of particular
interest in the context of linear codes over prime fields. Using this method a generator matrix for
such a code can be computed that is described by its parity check matrix.

The second part is devoted to the universal Gröbner basis of the code ideal. Gröbner bases are
an essential tool for utilizing ideals in computer algebra systems. But as Gröbner bases vary with
the monomial order and distinct applications require different monomial orders, it is advantageous
to know the universal Gröbner basis, i.e., a finite generating set of the ideal which is a Gröbner
basis for all monomial orders. For toric ideals this problem has been solved and an algorithm for
computing the universal Gröbner basis has been provided [9]. For the code ideal, however, this
problem remains unsolved. To this end several concepts used in connection with toric ideals will
be adapted. In particular, it will be shown that for binary linear codes the universal Gröbner basis
can be completely described by a linear algebraic rank condition.
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2 Computing the Kernel of a Matrix over a Finite Field

Let A be an m × n matrix with entries in Z and denote by Λ(A) its Lawrence lifting. For any
u ∈ Z write u+ = max{u, 0} and u− = max{−u, 0} and for any vector v ∈ Zn define v+ and v−

componentwise. Clearly, v = v+ − v−, where v+, v− ∈ Nn0 have disjoint support.
It is well-known that the toric ideal I(A) associated to the matrix A is generated by pure

binomials xv
+ − xv

−
, where v+ − v− belongs to kerZ(A), and that there is a bijection between

pure binomials in I(A) and I(Λ(A)) by mapping xu − xv to xuyv − xvyu. It follows that if u ∈
kerZ(A)∩N0, then the binomial xu−yu belongs to I(Λ(A)) [3, 8, 9]. This gives the foundation for
an algorithm computing the Hilbert basis of the submonoid kerZ(A)∩N0 using Gröbner bases [10].

In the following, let Fp denote a finite field with p elements, where p is a prime. We will provide
an adaptation of the above mentionend Hilbert basis algorithm for finding a basis of the subspace

ker(H) := ker(Hp) ⊂ Fnp , (1)

where H is an m× n integer matrix and Hp = H ⊗Z Fp.
In order to account for p = 0 in Fp, the following ideal will be used

Ip(x) = 〈xpi − 1 | 1 ≤ i ≤ n〉 .

In this way, the exponents of the monomials can be treated as vectors in Fnp .
Let H = (hij) be an m× n-matrix with entries in Fp and define the ideals

JH =

〈
vj − wj

m∏

i=1

x
hij

i | 1 ≤ j ≤ n
〉

(2)

and

IH = JH + Ip(x) + Ip(v) + Ip(w). (3)

Furthermore, define the mapping ψ : K[v1, . . . , vn, w1, . . . , wn]→ K[x1, . . . , xm, w1, . . . , wn] on the
variables first

ψ(vj) = wj

m∏

i=1

x
hij

i and ψ(wj) = wj , 1 ≤ j ≤ n, (4)

and then extend it such that it becomes a ring homomorphism. Obviously, ker(ψ) = JH ∩K[v,w].
This homomorphism can be used to detect elements in the kernel of H.

Lemma 2.1. If α, α′, β, β′ ∈ Fnp with α′−α = β−β′ in Fnp , then α′−α ∈ ker(H) if and only if

ψ(vα
′
wβ′ − vαwβ) = 0 mod (Ip(x) + Ip(v) + Ip(w)) . (5)

Indeed, this result also holds when the field Fp is replaced by Zm = Z/mZ, where m is an
arbitrary positive integer [6].

Note that each nonzero vector α ∈ Fnp can be written as α = (0, . . . , 0, αi, ᾱ), where αi ∈ Fp\{0}
and ᾱ ∈ Fn−ip . Put α′ = αiei − α = (0, . . . , 0, 0,−ᾱ), where ei is the ith unit vector.

Theorem 2.2. Let G be a Gröbner basis for IH w.r.t. the lexicographical order with x1 �
. . . � xm � v1 � . . . � vn � w1 � . . . � wn. Then a basis for ker(H) in Fnp is given by

H =
{

(0, . . . , 0, αi, ᾱ) ∈ Fnp | vαi
i − vα

′
wα ∈ G, α′ = αiei − α, αi 6= 0, 1 ≤ i ≤ n

}
. (6)

This result provides an algorithm for computing a basis of the matrix kernel over a finite prime
field. Moreover, if this algorithm is applied to Zm where m is not prime, it yields a module basis
when ker(H) is a free Zm-module and a generating set in row reduced echelon form when it is not
free.

There are several differences between this adaptation and the original method. First, Hilbert
bases for submonoids are unique as opposed to bases for vector spaces. Thus in the first case,
the unique Hilbert basis is computed. In the second case, however, a specific vector space basis
is calculated, namely the one which is in reduced row echelon form with respect to the first m

115



columns. Indeed, changing the lexicographic order x1 � . . . � xm to xi1 � . . . � xim yields a basis
in reduced row echelon form with respect to the columns i1, i2, . . . , im.

Second, in the algorithm for computing the Hilbert basis the set H is constructed by selecting
binomials of the form vα − wα from the Gröbner basis which is justified by the fact that every
pure binomial in the ideal I(Λ(A)) has the shape vαwβ − vβwα. However, adding the ideals
Ip(x), Ip(v) and Ip(w) produces an ideal which also contains pure binomials vαwβ − vα

′
wβ′ with

α− α′ = β′ − β but possibly α 6= β′ and α′ 6= β in Fnp .
Finally, the proposed method is rather unefficient when compared to other known methods

from linear algebra since computation of Gröbner bases can be rather costly. Nevertheless it is
of interest from the theoretical point of view because it demonstrates the extension to the finite
module case.

3 Universal Gröbner Basis for the Code Ideal

For an [n, k] code C over a prime field Fp define the associated code ideal to be

IC =
〈
xc − xc

′ | c− c′ ∈ C
〉

+ Ip(x) ⊂ K[x1, . . . , xn], (7)

where K is an arbitrary field. As in the previous section Ip(x) allows to view the exponents of the
monomials as vectors in Fnp . This ideal can be based on a toric ideal as follows,

IC = IA + Ip(x), (8)

where A in an integral n − k × n matrix such that H = A ⊗Z Fp is a parity check matrix for C.
This shows that IC is given as the sum of a toric ideal and a non-prime ideal.

Clearly, the ideal IC is generated by pure binomials xc − xc
′

with c − c′ ∈ C. Thus, in what
follows binomials will always be considered to be pure. A binomial xc − xc

′
in IC is said to be

associated to the codeword c − c′, but unlike for a toric ideal, there is more than one binomial
associated to a codeword since the decomposition c = c+ − c− is not unique. This is one of the
main reasons why results concering toric ideals cannot be translated one-to-one to this setting.

In [9] the author has introduced several concepts in the context of toric ideals which will be
utilized in the following. Because of the mentionend subtleties, however, several of these concepts
need to be adapted.

A binomial xc − xc
′

in IC is called primitive if there is no other binomial xu − xu
′

in IC such
that xu divides xc and xu

′
divides xc

′
. If C is a binary code then we additionally require c′ 6= 0.

The Graver basis for C consists of all primitive binomials lying in the corresponding code ideal and
is denoted by GrC .

A binomal xc−cc′ in IC is called a circuit if it is a primitive binomial and its support is minimal
with respect to inclusion. Denote by CC the set of all circuits of the ideal IC . Finally, denote the
universal Gröbner basis by UC .

The binary and non-binary case differ substantially. In the binary case, being a circuit is a
property which only depends on the codeword associated to the binomial. To be more precise, the
binomial xc − xc

′
is a circuit if and only if the associated codeword c − c′ has minimal support

w.r.t. inclusion. In other words, if one expansion c = c+− c− yields a circuit, then every expansion
of c is a circuit and the same is true for being primitive. In the non-binary situation, however, this
is not true as is illustrated next.

Example 1. Consider the linear code C over F7 generated by G =

(
1 0 4
0 1 1

)
and the

corresponding code ideal IC in Q[a, b, c]. The codeword (2, 6, 0) has minimal support. Expanding
(2, 6, 0) = (2, 0, 0)− (0, 1, 0) gives the circuit a2 − b. However, writing (2, 6, 0) = (0, 6, 0)− (5, 0, 0)
yields the binomial b6 − a5 which is not even primitive because b2 − a4 also belongs to IC .

Proposition 3.1. For a linear code C over Fp, CC ⊆ UC ⊆ GrC .

Note that the same inclusions are obtained for toric ideals [9]. For non-binary linear codes,
these inclusions can be strict. For binary linear codes, however, all three sets coincide.

Theorem 3.2. For a binary linear code C the set of circuits CC equals the Graver basis GrC .
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For a binary [n, k] code C one can even further describe all primitive binomials in the code ideal
IC . If xc−xc

′
is primitive, then wt(c− c′) ≤ n− k+ 1 and for any generator matrix G of the code

C the submatrix Gn\supp(c−c′) has rank k− 1. And the converse is also true, i.e., if c is a codeword
of Hamming weight less than or equal to n− k + 1 and such that Gn\supp(c) has rank k − 1, then
any binomial associated to c is primitive.

Theorem 3.3. Let C be a binary [n, k] code. The universal Gröbner basis for the correspond-
ing code ideal IC is given by the set

UC =
{
xc − xc

′ | c− c′ ∈ C,wt(c− c′) ≤ n− k + 1, rk
(
Gn\supp(c−c′)

)
= k − 1

}

∪
{
x2i − 1 | 1 ≤ i ≤ n

}
.

In other words, the universal Gröbner basis for the code ideal consists of all binomials which
correspond to codewords that satisfy the Singleton bound and a particular rank condition.

This result gives rise to a new class of binary linear codes whose codewords which fulfill the
Singleton bound also satisfy the rank condition. A binary linear code C is called a Singleton code if
each non-zero codeword c with Hamming weight ≤ n− k+ 1 has the property that the submatrix
Gn\supp(c) has rank k − 1 for any generator matrix G for C.

Singleton codes are the parity check codes, the MDS codes, the binary Golay code and its
parity check extension, the Simplex codes, and the first order Reed-Muller codes and their duals.
On the other hand, not all Hamming codes are Singleton.
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Abstract

Sequence generators based on Linear Feedback Shift Registers (LFSRs) are very common
procedures to generate pseudorandom sequences for multiple applications: computer simula-
tion, circuit testing, error-correcting codes or cryptography (stream ciphers).

The encryption procedure in stream ciphers tries to imitate the mythic one-time pad cipher
[1] that remains as the only known perfectly secure cipher. This encryption procedure is
designed to generate from a short key a long sequence (keystream sequence) of seemingly
random bits. Some of the most recent designs in stream ciphers can be found in [2]. Typically,
a stream cipher consists of a keystream generator whose output sequence is bit-wise XORed
with the plaintext (in emission) in order to obtain the ciphertext or with the ciphertext
(in reception) in order to recover the original plaintext. References [3, 4] provide a solid
introduction to the study of stream ciphers.

Most keystream generators are based on maximal-length LFSRs [6] whose output sequences
or m-sequences are combined by means of nonlinear filters, nonlinear combinators, irregularly
decimated generators, typical elements from block ciphers, etc to produce sequences of cryp-
tographic application.

Desirable properties for such sequences can be enumerated as follows:

1. Long Period

2. Good statistical properties

3. Large Linear Complexity (LC ).

One general technique for building a keystream generator is to use a nonlinear filter, i.e. a
nonlinear function applied to the stages of a single maximal-length LFSR. That is the output
sequence is generated as the image of a nonlinear Boolean function F in the LFSR stages.
Period and statistical properties of the filtered sequences are characteristics deeply studied in
the literature, see [7] and the references above mentioned. In addition, such sequences have
to pass all 19 DIEHARD tests [8] to be accepted as cryptographic sequences.

Regarding the third requirement, linear complexity of a sequence is defined as the amount
of known sequence necessary to reconstruct the entire sequence. In cryptographic terms, LC
must be as large as possible in order to prevent the application of the Berlekamp-Massey
algorithm [9]. A recommended value for LC is about half the sequence period. Although
several contributions to the linear complexity of nonlinearly filtered sequences can be found
in the literature [5], [10] or [11], the problem of determining the exact value of the linear
complexity attained by any nonlinear filter is still open.

Now some basic notation is introduced:
Nonlinear filter. It is a Boolean function F (x0, x1, . . . , xL−1) in L variables of degree

k. For a subset A = {a0, a1, . . . , ar−1} of {0, 1, . . . , L − 1} with r ≤ k, the notation xA =
xa0 xa1 . . . xar−1 is used. The Boolean function can be written as:

F (x0, x1, . . . , xL−1) =
∑

A

cA xA, (1)

where cA ∈ {0, 1} and the summation is taken over all subsets A of {0, 1, . . . , L− 1}.
Filtered sequence. The sequence {zn} is the keystream or output sequence of the nonlinear

filter F applied to the L stages of the LFSR. The keystream bit zn is computed by selecting
bits from the m-sequence {sn} such that

zn = F (sn, sn+1, . . . , sn+L−1). (2)

Equation (1) describes the Algebraic Normal Form (ANF) of a nonlinear filter F . That is the
filter is represented as the sum of distinct products in the variables (sn, sn+1, . . . , sn+L−1).
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The ANF representation of a nonlinear filter is unique. At the same time, a nonlinear filter
F (sn, sn+1, . . . , sn+L−1) can be represented in terms of aN -tuple of coefficients (C1, C2, . . . , CN )
with Ci ∈ GF (2L) where each coefficient determines the starting point of its corresponding
characteristic sequence and N denotes the number of cosets of weight ≤ k, see [5].

In this work, a method of computing all the nonlinear filters of order k applied to a
LFSR with linear complexity LC ≥

(
L
k

)
(where L is the LFSR length) has been developed.

The procedure is based on the concept of equivalence classes of nonlinear filters and on the
handling of such filters from different classes.

Let G be the set of the kth-order nonlinear filters applied to a LFSR of length L. We are
going to group the elements of G producing the filtered sequence {zn} or a shifted version of
such a sequence. Therefore, two different nonlinear filters F0, F1 in the same equivalence class
will produce shifted versions of the same filtered sequence.

After distinct operations on the nonlinear filters from different equivalence classes, the final
result of this computing method is:

1. A set of N basic filters of the form (0, 0, . . . , di, . . . , 0, 0) (1 ≤ i ≤ N) with di ∈
GF (2L), di 6= 0.

2. Their corresponding ANF representations.

The combination of all these basic filters with di (1 ≤ i ≤ N) ranging in GF (2L) (with their
corresponding ANF representations) gives rise to all the possible terms of order k that preserve
the cosets of weight k. From such terms, all the nonlinear filters of order k with a guaranteed
linear complexity LC ≥

(
L
k

)
can be constructed. Recall that the construction method involves

very simple operations:

• Sum operation: that is reduced to a sum of filters for the ANF representation or to a
sum of elements of the extended field GF (2L) that expressed in binary representation is
just the XOR logic operation.

• Shifting operation through an equivalence class: that means an increment by 1 in all the
indexes in the ANF representation.

Consequently, the efficiency of the computation method is quite evident. In brief, we
provide one with the complete class of nonlinear filters with LC ≥

(
L
k

)
at the price of minimal

computational operations.
No restriction is imposed on the parameters of the nonlinear filtering function. The method

completes the families of nonlinear filters with guaranteed large LC given in [5].
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Abstract

The famous Feng-Rao bound for the minimum distance of dual codes was born using a
language close to that of affine variety codes. Afterwards it was generalized to the level of
general linear codes. The first generalized version of the Feng-Rao bound used one basis for
Fn
q and the well-behaving (WB) property. Later formulations use two or three bases of Fn

q , the
weakly well-behaving (WWB) property or, even, the one-way well-behaving (OWB) property.
It is trivial to prove that the Feng-Rao bound obtained with OWB property is at least as
sharp as the one obtained with WWB property which in turn is at least as sharp as the one
with WB. Whereas it is known that WWB produces sometimes strictly better results than
WB, until now no examples have been known for which OWB produces better results than
WWB.
In 2006 Salazar, Dunn and Graham proposed the advisory bound based on the WWB property
and the analysis of the syndromes of the dual code. This bound was a new improvement of
the Feng-Rao bound for the minimum distance, but they still used a language connected with
affine variety codes.

We give several contributions.

• We show that the advisory bound can be generalized for general linear code and that
this bound is a consequence of a lemma from which further improvements of Feng-Rao
bound can be derived using the OWB property.

• We introduce a new bound for the minimum distance of dual codes which is sometimes
strictly sharper than the advisory bound and always at least as good. To obtain our
result we use a relaxation of the concept of OWB property.

• We show how to obtain new bounds for generalized Hamming weights of dual codes using
the advisory bound and the new bound proposed in our work. We remind the reader
that generalized Hamming weight is relevant for the analysis of wiretap channels of type
II, secret sharing schemes based on error correcting codes and the computation of the
trellis complexity of a linear code.

• We compare these bounds to each other in illustrative examples. These examples are
obtained by analyzing the codes over optimal generalized Cab curves over Fq (Cab curves
with no assumptions on gcd(a, b) and with aq roots). Furthermore they demonstrate for
the first time in the literature that the Feng-Rao bound with OWB can sometimes be
strictly sharper than the one equipped with WWB.
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In our examples we generate several tables comparing the performances of the bounds.

Example:
Consider X4−Y 6+X2+X−Y 5−Y 3 ∈ F8[X,Y ] and the corresponding variety {P1, . . . , P32}.
Let ≺w be the weighted degree lexicographic ordering with w(X) = 3, w(Y ) = 2 and X �Lex

Y . Consider the footprint
∆≺w

(〈
X4 − Y 6 +X2 +X − Y 5 − Y 3, X8 −X,Y 8 − Y

〉)
= {N1, . . . , N32}; enumerated with

respect to ≺w. Write ~wi = (Ni(P1), . . . , Ni(Pn)) for i = 1, . . . , 32 and define the dual code
C(s) = {~c ∈ F32

8 | ~c · ~w1 = . . . = ~c · ~ws = 0}. We derive the results in Figure 1.

Figure 1: The figure lists the dimensions of codes C(s) over F8 and corresponding estimates on
the generalized Hamming weights d1, . . . , d5. Information about C(s) is placed in position ~ws+1.
An entry z1 means that the value z was obtained from the Feng-Rao bound with WB, z2 indicates
that the same bound with WWB was used, and finally z3 the same bound with OWB. With z4

we indicate that the value z was obtained from the advisory bound and by z5 that the bound
proposed in our work was used.
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Abstract

In this paper we study a class of graph codes with BCH component codes as affine
variety codes. We are able to find some optimal binary and ternary codes as Tanner
codes with BCH component codes. We choose a special subgraph of the point-line
incidence plane of P(2, q) as the Tanner graph, and we are able to describe the codes
using Gröbner basis.

Keywords
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Introduction

In 1981 Tanner [4] introduced a construction of error-correcting codes based on bipartite
graphs. Since then results on their dimension, minimum distance and decoding have been
obtained. In this paper we consider some specific bipartite graphs based on finite geometries
and codes constructed from these graphs. We use techniques from algebra to compute the
dimension when this class of graph codes has BCH component codes. We find some optimal
binary and ternary codes in this class of codes.

In this paper q denotes a power of prime p, Fq the field with q elements, and [n, k, d]q a
code with length n, dimension k, and minimum distance d over Fq.

Tanner Codes and Graph Codes

In this section, we introduce two important codes based on graphs: Tanner Codes and
Graph Codes. We also discuss the relations between the two constructions.

Definition 1 ([4]). Let G be an (m,n)-regular bipartite graph with vertex set V = V1 ∪ V2.
Let N = |V1|. For v ∈ V2, we assume an ordering on the set N (v), the vertices in V1
adjacent to v, given by φv, where φv is a bijection from {1, 2, . . . , n} to N (v). Furthermore
we define (c)N (v) := (cφv(1), cφv(2), . . . , cφv(n)) ∈ Fnq .

Let C be a code of length n over Fq. We define the Tanner code

(G,C) := {(cv) ∈ FNq | ∀ v ∈ V2 : (c)N (v) ∈ C}.

The vertices of V1 are known as the variable nodes, as they contain the symbols of the
codewords. The vertices of V2 are known as the constrain nodes, as they represent the parity
check equations (G,C) must satisfy.
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By using a highly structured graph, along with a highly structured code and well–chosen
edge labelings, we describe the Tanner code in a nice, algebraic way. The importance of the
labeling functions may not be clear from the definition, but the code parameters depend
on them. We now define another class of graph based codes. For these codes the labeling
functions φv play a fundamental role as well.

Definition 2 ([3]). Let G be an n-regular bipartite graph with vertex set V = V1 ∪ V2 and
edge set E of cardinality #E = N . For v ∈ V , we assume an ordering on the set E(v),
the edges incident with v, given by φv, where φv is a bijection from {1, 2, . . . , n} to E(v).
Furthermore we define (c)E(v) := (cφv(1), cφv(2), . . . , cφv(n)) ∈ Fnq .

Let C1 and C2 be codes of length n over Fq. We define the graph code

(G,C1 : C2) := {(ce) ∈ FNq | ∀ v ∈ V1 : (c)E(v) ∈ C1, ∀ v ∈ V2 : (c)E(v) ∈ C2}.

Observe that
(G,C1 : C2) = (G,C1 : Fnq ) ∩ (G,Fnq : C2). (1)

We define the vertex–edge incidence graph of G, which illustrates the close connection
between Tanner codes and Graph codes.

Definition 3. Let G = (V (G), E(G)) be a graph. We define the vertex-edge adjacency
graph of G as the bipartite graph Gve = (V (G) ∪ E(G), E). There is an edge of the graph
Gve between the vertex v of G and the edge e of G if and only if the vertex v is incident to
the edge e in the graph G. Gve has no other edges.

Now we state the close relation between Tanner Codes and Graph Codes.

Theorem 1. Let G be an n-regular bipartite graph. Let C be a code of length n, then

(G, [n, 1, n]q : C) is an n-fold repetition of the code (G,C) and (G,C : C) = (Gve, C).

as long as the labelings are consistent.

Proof. The equality (G,C : C) = (Gve, C) follows from the correspondence between the
edges of G and the vertices of Gve. The equivalence between (G, [n, 1, n] : C) and (G,C)
follows from the fact that since all edges incident to a vertex of V1 must have the same value,
we can assign this value to the vertex itself, which is the assignment for the code (G,C).

We finish this section with some theorems on the dimension of Graph codes.

Theorem 2. Let G be an n-regular bipartite graph with N edges. Let C1, C2 be codes of
length n over Fq of dimensions k1 and k2 respectively. Then

dim (G,C1 : C2) =
N

n
(k1 + k2 − n) + dim (G,C⊥1 : C⊥2 ).

Proof. Assume G has vertex set V = V1 ∪V2. For each vertex v ∈ V1 we get k1 independent
parity check equations for C⊥1 involving the edges in E(v) only. The resulting Nk1/n parity
check equations of a code of the form (G,C1 : Fnq ) are independent because the edge sets

E(v) and E(u) are disjoint for u 6= v. Therefore the dimension of the code (G,C⊥1 : Fnq ) is

N(n−k1)/n. Similarly, the code (G,Fnq : C⊥2 ) has dimension N(n−k2)/n. The parity check

equations which are not independent are those corresponding to (G,C⊥1 : Fnq )∩ (G,Fnq : C⊥2 )

which are the codewords of (G,C⊥1 : C⊥2 ).

The graph based codes in this paper are defined with the following graph.
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Definition 4. We define the bipartite graph Γ := (V1 ∪ V2, E) by:

V1 := {(x, y) | x ∈ F∗q , y ∈ Fq}, V2 := {(a, b) | a ∈ F∗q , b ∈ Fq}
and E := {((x, y), (a, b)) ∈ V1 × V2 | ax+ b− y = 0}.

Note that Γ is a subgraph of the point line incidence graph of the projective plane over
Fq. Furthermore Γ is q − 1-regular and it has a nice algebraic description.

Affine Variety Codes We start this section with a review of material in [2] and [1]. Let
Fq[X1, . . . , Xm] be the polynomial ring in m variables over Fq and P = {P1, P2, . . . , PN} ⊂
Fmq be a set of N points in Fmq . Denote by I(P) the ideal in Fq[X1, . . . , Xm] consisting of
the polynomials which vanish at all points of P. We define R := Fq[X1, . . . , Xm]/I(P) and
the evaluation map,

EvP : R → FNq ; f 7→ (f(P1), f(P2), . . . , f(PN )).

The map EvP is an isomorphism of vector spaces. Note that in this paper, we often denote
an element f̄ = f + I(P) ∈ R by f for simplicity.

Definition 5. Let L be an Fq-linear subspace of R. We define the affine variety code
C(I(P), L) := EvP(L).

Since L is an Fq-linear subspace of R and EvP is an isomorphism, we have that

dimC(I(P), L) = dimL. (2)

Lemma 1. Let P ⊂ Fmq , R = Fq[X1, X2, . . . , Xm]/I(P) as before. Suppose that L and M
are two Fq-linear subspaces of R. Then C(I(P), L) ∩ C(I(P),M) = C(I(P), L ∩M).

Proof. If c ∈ C(I(P), L) ∩ C(I(P),M), then f ∈ L and g ∈ M exist such that EvP(f) =
c = EvP(g). Since EvP is injective, then f = g and therefore that f ∈ L ∩M . Therefore
c ∈ C(I(P), L∩M). The inclusion C(I(P), L)∩C(I(P),M) ⊇ C(I(P), L∩M) is clear.

Since the quotient ring R plays a fundamental role on Affine Variety codes, the following
theorem on an ideal I(P) and its quotient ring R will help our computations with R.

Theorem 3 ([1]). Let I(P) be an ideal of Fq[X1, . . . , Xm] and R = Fq[X1, . . . , Xm]/I(P)
be the quotient ring of R. Let δ be a monomial ordering, and suppose {g1, g2, . . . , gm′} is a
Gröbner basis for I(P) under δ and let ∆δ be the set of monomials which are not divisible
by the leading terms of the gi under δ. Then the following are true:

• ∆δ, also known as the footprint of I(P) under δ, is a Fq-linear basis for R.

• The representation of f ∈ R over ∆δ is f mod {g1, g2, . . . , gm′} .

BCH codes are an example of affine variety codes withm = 1 and P = {α1, α2, . . . , αq−1} =

F∗q . Then I(P) = 〈Xq−1
1 − 1〉. BCH codes have several definitions; we use the follow-

ing. Let q be a power of p. Let J ⊆ Zq−1, such that J is closed under multiplication

by p modulo q − 1. We define M(J) := 〈{Xj
1 | j ∈ J}〉Fq of R = Fq[X1]/I(P). The

BCH code is the affine variety code C(I(P),M(J)). The i-th coordinate of EvP(f) is
f(αi). Furthermore if we define J̄ = {q − 1 − j mod (q − 1) | j ∈ J} for J ⊂ Zq−1, then
C(I(P),M(J))⊥ = C(I(P),M(Zq−1 \ J̄)). The theory of subfield subcodes ensures that this
definition is equivalent to the standard definitions of BCH codes.

Now we describe Graph codes over Γ as Affine Variety codes. Since a Graph code over
G assigns a symbol from Fq to each edge in E(G), we must associate a polynomial ideal
I(Γ) to the edge set E = E(Γ). To do this, let δ1 denote the lexicographical order with
B > A > X > Y and δ2 denote the lexicographical order with Y > X > A > B, we have
the following theorem for the ideal I(Γ) := 〈AX+B−Y,Xq−1−1, Y q−Y,Aq−1−1, Bq−B〉.
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Theorem 4. The set {AX+B−Y,Xq−1−1, Y q−Y,Aq−1−1, Bq−B} is a Gröbner basis
for I(Γ) under δ1 and δ2.

Proof. The polynomial Bq − B is a combination of the other four polynomials, AX + B −
Y,Xq−1 − 1, Y q − Y,Aq−1 − 1. As no leading term under δ1 of this basis for I(Γ) contains
any common factor with another leading term, these four polynomials constitute a Gröbner
basis for I(Γ). The proof for δ2 is similar.

Denote by ∆1 the footprint of I(Γ) under δ1 and by ∆2 the footprint of I(Γ) under δ2.

Theorem 5. The ideal I(Γ) is the ideal of E, the edge set of Γ.

Proof. The elements of I(Γ) vanish at all the points of E. Therefore I(Γ) ⊂ I(E). This
implies that dimFq[X,Y,A,B]/I(Γ) ≥ dimFq[X,Y,A,B]/I(E) = #E = q(q − 1)2. Since
#∆1 = q(q − 1)2, then dimFq[X,Y,A,B]/I(Γ) = q(q − 1)2, which implies I(Γ) = I(E)

We need a vertexwise edge labeling of the edges of Γ. The labelings we will use are:

φ(x,y)(i) := (x, y, αi, y − xαi), (x, y) ∈ V1, and φ(a,b)(i) := (αi, aαi + b, a, b), (a, b) ∈ V2.

For any J ⊂ Zq−1, we describe the codes (Γ, C(I(P),M(J)) : Fq−1q ) and (Γ,Fq−1q :
C(I(P),M(J))) as affine variety codes.

Definition 6. Let J ⊂ Zq−1 and R = Fq[X,Y,A,B]/I(Γ), we define

L1(J) := 〈{Xi1Y i2Aj1 | j1 ∈ J}〉Fq
⊂ R, and L2(J) := 〈{Aj1Bj2Xi1 | i1 ∈ J}〉Fq

⊂ R.

Note that the elements of L1(J) and L2(J) belong to the quotient ring R. In particular
the monomials in the above definition may not be linearly independent, because we are
working modulo I(Γ). We use the representations of L1(JX) and L2(JA) under ∆1 and ∆2 to
describe the graph code (Γ, C(I(P),M(JX)) : C(I(P),M(JA))) as an affine variety code. By
Eq. (1) we have the equality (Γ, C(I(P),M(JX)) : C(I(P),M(JA))) = (Γ, C(I(P),M(JX)) :
Fq−1q ) ∩ (Γ,Fq−1q : C(I(P),M(JA))).

Theorem 6. We have

C(I(Γ), L1(JX)) = (Γ, C(I(P),M(JX)) : Fq−1q )

and C(I(Γ), L2(JA)) = (Γ,Fq−1q : C(I(P),M(JA))).

Moreover, (Γ, C(I(P),M(JX)) : C(I(P),M(JA))) = C(I(Γ), L1(JX) ∩ L2(JA)).

Proof. Let f(X,Y,A,B) ∈ L1(JX) and c = (f(x, y, a, b))(x,y,a,b)∈E . For (x, y) ∈ V1, the
univariate polynomial p(A) := f(x, y,A, y − Ax) is in the vector space 〈{Aj | j ∈ JX}〉Fq

since the coefficients where y − Ax is raised to a nonzero power are zero . Therefore the
codeword (p(α1), p(α2), . . . , p(αq−1)) is a codeword in C(I(P),M(JX)). On the other hand
(c)E((x,y)) = (f(x, y, α1, y − α1x), . . . , f(x, y, αq−1, y − αq−1x)). We see that the value of
the polynomial p(A) at A = αi is equal to the i-th coordinate of (c)E((x,y)). Therefore
c ∈ (Γ, C(I(P),M(JX)) : Fq−1q ) implying C(I(Γ), L1(JX)) ⊂ (Γ, C(I(P),M(JX)) : Fq−1q ).

By the reasoning in the proof of Theorem 2, we obtain dim(Γ, C(I(P),M(JX)) : Fq−1q ) =
q(q − 1)|JX |. Since the elements of L1(JX) ∩ ∆1 are linearly independent, the inequal-
ity dimL1(JX) ≥ q(q − 1)|JX | = |L1(JX) ∩ ∆1| follows easily. Equation (2), implies
C(I(Γ), L1(JX)) = (Γ, C(I(P),M(JX)) : Fq−1q ). Similarly C(I(Γ), L2(JA)) = (Γ,Fq−1q :
C(I(P),M(JA))) holds. The final statement follows from the above and Lemma 1.
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The dimension of (Γ, C(I(P),M(JX)) : C(I(P),M(JA))) equals the dimension of the
Fq-linear subspace 〈L1(JX)〉Fq

∩ 〈L2(JA)〉Fq
of R . Although L1(JX) ∩ ∆1 is a basis for

〈L1(JX)〉Fq
) and L2(JA)∩∆2 is a basis for 〈L2(JA)〉Fq

, their intersection is hard to compute.
Since the Gröbner basis for I(Γ) under δ1 is nice, the remainder of f ∈ 〈∆2〉 over the basis
∆1 is also nice, wihch implies the change of basis matrix from ∆2 to ∆1 is quite nice.

Theorem 7. Let Uq = (
(
j
i

)
)0≤i,j<q be the upper triangular Pascal matrix of binomial co-

efficients in Fp. Then the change of basis matrix from ∆1 to in ∆2 is a permutation of a
block diagonal q(q − 1)2 × q(q − 1)2 matrix with (q − 1)2 blocks of the matrix Uq.

Proof. Fix 0 ≤ i1, j1 < q − 1. A monomial of the form Xi1−lAj1−lY l, where the powers
i1− l and j1− l are taken mod q− 1 is mapped to Σlm=0

(
l
m

)
BmAj1−mXi1−m. Therefore a

polynomial in 〈Xi1−lAj1−lY l〉Fq is mapped to a polynomial in 〈Xi1−lAj1−lBl〉Fq according
to the Pascal matrix Uq.

With this simpler basis, we can easily compute the dimension of the Fq-linear space
L1({0}),∩L2(JA). We present some optimal codes we have found in this manner.

Optimal Codes

We have found some optimal binary and ternary codes as Tanner codes of the graph Γ
with the BCH component codes described in the following table.

q JA (Γ, C(I(P),M(JA))) Status

8
{1, 2, 4} [56, 6, 28]2 Optimal

{0, 1, 2, 4} [56, 10, 24]2 Optimal

16

{5, 10} [240, 2, 160]2 Optimal

{1, 2, 4, 8} [240, 8, 120]2 Optimal

{0, 1, 2, 4, 8} [240, 13, 112]2 Best Known

9
{1, 3} [72, 2, 54]3 Optimal

{0, 1, 3} [72, 5, 45]3 Best Known
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Abstract

A secret sharing scheme will be proposed by a computer algebra algorithm. Wang et al.
have already proposed a secret sharing scheme using Gröbner basis. We will show another one
using Gröbner basis. Our method reduces required memory space to hold share information
for participants.

Keywords
Secret sharing scheme, Gröbner basis, Cheater detection

1 Introduction

The secret sharing scheme was proposed by Shamir [1] and Blakley [2] independently. In the
scheme, a secret s ∈ Zp where p is a prime number is divided into n shares. The n shares are held
by n different participants respectively. If we have k shares, where k ≤ n, then the secret can be
easily computed from them. However, we know only l shares, where l < k, then the secret never
be obtained. The above scheme is called as (k, n) secret sharing scheme.

It is well known that there are a lot of methods to realize the (k, n) secret sharing scheme. In
this paper, we consider a secret sharing scheme based on a computer algebra algorithm. Wang, et
al. [3] have already proposed a secret sharing scheme using Gröbner basis. In the method, shares
are presented by n+ 1 multivariate polynomials. In this paper, we propose another method using
Gröbner basis. In our method, shares are presented by n polynomials, and the memory space to
hold the share information for participants may be reduced.

2 A secret sharing scheme by Wang et al.

Let F be a field and F [x1, x2, · · · , xm] be a polynomial ring. We take a secret s ∈ F . Then, their
scheme is described as follows.

1 A dealer chooses k random polynomials f1, · · · , fk ∈ F [x1, x2, · · · , xm].

2 The dealer chooses a random matrix B ∈ Fn×k. Then (g1, · · · , gn)T = B × (f1, · · · , fk)T .

3 The dealer chooses a polynomial g = s + a1f1 + · · · + akfk, where ai ∈ F, i = 1, · · · , k are
random numbers. The dealer announces the share information (gi, g) to a participant Pi for
i = 1, · · · , k.

If we obtain k shares gi1 , gi2 , · · · , gik among the n shares, then the secret s can be computed from
the polynomial g and Gröaner basis of 〈gi1 , gi2 , · · · , gik〉.

Note that the scheme must satisfy following two conditions:

1 f1, · · · , fk ∈ 〈gi1 , · · · , gik〉 and gij 6∈ 〈gi1 , · · · , gij−1 , gij+1 , · · · , gik〉.

2 For any submatrix B1 ∈ F k×k of B , (b1, · · · , bk) = (a1, · · · , ak)×B−1
1 . Then, bi 6= 0 for all i.

They showed that, if these conditions are true, then the scheme is a (k, n) secret sharing scheme.
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3 Proposed method

In this paper, we consider another scheme as follows.

1 A dealer chooses k − 1 random polynomials f1, · · · , fk−1 ∈ F [x1, x2, · · · , xm].

2 The dealer chooses a random matrix B ∈ Fn×k−1. Then (g1, · · · , gn)T = s(1, 1, · · · , 1)T + B ×
(f1, · · · , fk−1)T

3 The dealer announces the share information gi to a participant Pi.

For i 6= j, we define gi,j = gi − gj , where note that gi,j ∈ 〈f1, · · · , fk−1〉. If we obtain k shares
gi1 , · · · , gik , then we can compute k − 1 polynomials gi1,i2 , gi2,i3 , · · · , gik−1,ik . The secret s will be
found from gi and Gröbner basis of 〈gi1,i2 , gi2,i3 , · · · , gik−1,ik〉.

In the scheme, participant Pi hold only a polynomial gi, while participants in the scheme
proposed by Wang et al have to keep two polynomials.

However, the following condition must be true to be a (k, n) secret sharing scheme.

1 f1, · · · , fk ∈ 〈gi1,i2 , · · · , gik−1,ik〉 and gij−1,ij 6∈ 〈gi1,i2 , · · · , gij−2,ij−1
, gij ,ij+1

, · · · , gik−1,ik〉.
2 Let B1 and B2 be (k − 1)× (k − 1) submatrices of B as follows.

B1 =




bj1,1 bj1,2 · · · bj1,k−1

bj2,1 bj2,2 · · · bj2,k−1

...
...

...
bjk−1,1 bjk−1,2 · · · bjk−1,k−1




B2 =




bj2,1 bj2,2 · · · bj2,k−1

bj3,1 bj3,2 · · · bj3,k−1

...
...

...
bjk,1 bjk,2 · · · bjk,k−1




Then, ci,j 6= 0, where



c1,1 c1,2 · · · c1,k−1

c2,1 c2,2 · · · c2,k−1

...
...

...
ck,1 ck,2 · · · ck,k−1


 =




bj1,1 bj1,2 · · · bj1,k−1

bj2,1 bj2,2 · · · bj2,k−1

...
...

...
bjk,1 bjk,2 · · · bjk,k−1


× (B1 −B2)−1

We can prove, analogously to the proof of Theorem 2.1 [3], that the proposed scheme is a (k, n)
secret sharing scheme, if the above conditions are true.

Further, as mentioned in [3], the scheme may be applied to cheater detection, because s may be
recovered as a polynomial (not a number, with high probability), if a participant gives an incorrect
share.

4 Conclusions

We proposed a secret sharing scheme by Gröbner basis. In the scheme, share information is
presented by a multivariate polynomial. Under the conditions described above, the scheme is a
(k, n) secret sharing scheme. It is important to estimate how much computation time is required,
and to consider how we can identify a wrong share if there is a cheater among the participants,
but they remain future works.
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Abstract

The security of the most popular number-theory public key crypto (PKC) systems will be
devastatingly affected by the success of a large quantum computer. Code-based cryptography
is one of the promising alternatives that are believed to resist classical and quantum computer
attacks. Many families of codes have been proposed for these cryptosystems, one of the main
requirements is having an efficient t-bounded decoding algorithm.

In [16, 17] it was shown that for the so called very strong algebraic geometry codes C which
is a collection of codes C = CL(X ,P, E), where X is an algebraic curve over Fq, P is an n-tuple
of mutually distinct Fq-rational points of X and E is a divisor of X with disjoint support from
P, an equivalent representation can be found. Moreover in [19] an efficient computational
approach is given to retrieve a triple that is isomorphic with the original representation, and,
from this representation, an efficient decoding algorithm is obtained.

In this talk, we will show how an efficient decoding algorithm can be retrieved from an
algebraic geometry code C by means of error-correcting pairs [20] and arrays directly, that is
without the detour via the representation (X ,P, E) of the code C = CL(X ,P, E).

As a consequence we will have that algebraic geometry codes with certain parameters are
not secure for the code-based McEliece public key cryptosystem.

Keywords
Code based cryptography, McEliece public key cryptosystem,
algebraic geometry codes, error-correcting pairs and arrays.

1 Introduction

The security of code-based cryptosystems is founded on the (supposedly) hardness of decoding up
to half the minimum distance. The minimum distance decoding problem was shown by Berlekamp-
McEliece-Van Tilborg [1, 3] to be NP-hard. McEliece [21] proposed a PKC system using binary
Goppa codes.

All known minimum distance decoding algorithms for general codes have exponential complex-
ity in the length of the code. The complexity exponent of decoding general binary codes up to
half the minimum distance has been lowered in a series of papers from above 1/3 for brute force
decoding to below 1/20 by [2]. However there are several classes of codes such as the generalized
Reed-Solomon (GRS), BCH, Goppa or algebraic geometry codes which have polynomial decoding
algorithms that correct up to a certain bound which is at most half the minimum distance.

In 1986 [23] Niederreiter presented a dual version of McEliece cryptosystem which is equivalent
in terms of security. This system differs from McEliece’s system since it uses a parity check matrix
instead of a generator matrix of the code. Several classes of codes are proposed for code-base
PKC systems such as subcodes of GRS codes, alternant codes which contains the Goppa codes as
subclass, and algebraic geometry codes [12].

It was shown in [6, 14, 24, 26, 28] that the known efficient bounded distance decoding algorithms
of the before mentioned codes can be described by a basic algorithm using an error-correcting pair.
That means that the proposed McEliece cryptosystem that use these classes of codes can be viewed
as using the error-correcting pair as a secret key. Hence the security of these PKC systems is not
only based on the inherent intractability of bounded distance decoding but also on the assumption
that it is difficult to retrieve an error-correcting pair.
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2 Error-correcting pairs and arrays

From now on the dimension of a linear code C will be denoted by k(C) and its minimum distance
by d(C). Given two elements a and b in Fn

q , the star multiplication is defined by coordinatewise
multiplication, that is a ∗ b = (a1b1, . . . , anbn) while the standard inner multiplication is defined
by a · b =

∑n
i=1 aibi. In general, for two subsets A and B of Fn

q the set A ∗ B is given by
{a ∗ b | a ∈ A and b ∈ B}. Furthermore A ⊥ B if and only if a · b = 0 for all a ∈ A and b ∈ B.

Let C be a linear code in Fn
q . The pair (A,B) of linear codes over Fqe of length n is called a

t-error-correcting pair (ECP) for C if the following properties hold:

E.1 (A ∗B) ⊥ C,

E.2 k(A) > t,

E.3 d(B⊥) > t,

E.4 d(A) + d(C) > n.

The notion of an error-correcting pair for a linear code was introduced in 1988 by Pellikaan
[24, 26] and independently by Kötter in [14, 15] in 1992. It is shown that a linear code in Fn

q with
a t-error-correcting pair has a decoding algorithm which corrects up to t errors with complexity
O
(
(en)3

)
.

The existence of ECP’s for GRS and algebraic geometry codes was shown in [24, 26]. For
many cyclic codes Duursma and Kötter in [6, 14, 15] have found ECP’s which correct beyond the
designed BCH capacity.

An error-correcting array is defined in [13, 27] for a sequence of codes. From it follows the
Feng-Rao designed minimum distance of the codes and the majority voting scheme of Feng-Rao
[4, 5, 8] gives a decoding algorithm that decodes these codes up to half the Feng-Rao designed
minimum distance with complexity O(n3). An equivalent formulation is given in terms of (weakly)
well-behaving sequences [9, 10, 11].

3 Algebraic geometry codes

Let X be an algebraic curve defined over Fq with genus g. Let P be an n-tuple of Fq-rational points
on X and let E be a divisor of X with disjoint support from P of degree m. Then the algebraic
geometry code CL(X ,P, E) is the image of the Riemann-Roch space L(E) of rational functions
with prescribed behavior of zeros and poles at E under the evaluation map evP . If m < n, then
the dimension of the code CL(X ,P, E) is at least m+ 1− g and its minimum distance is at least
n − m. If m > 2g − 2, then its dimension is m + 1 − g. The dual code CL(X ,P, E)⊥ is again
AG. If m > 2g − 2, then the dimension of the code CL(X ,P, E)⊥ is at least n−m− 1 + g and its
minimum distance is at least d∗ = m− 2g + 2, which is called the designed minimum distance. If
m < n, then its dimension is n−m− 1 + g.

Algebraic geometry codes were proposed by Niederreiter [23] and Janwa-Moreno [12] for code-
based PKC systems. This system was broken for genus zero [29], one and two [7, 22] and for
arbitrary genus for so called VSAP codes [16, 17, 18, 19].

Let r = l(E)− 1 and {f0, . . . , fr} be a basis of L(E). Consider the following map:

ϕE : X −→ Pr(Fq)

defined by ϕE(P ) = (f0(P ) : . . . : fr(P )). If m > 2g, then r = m − g. So ϕE defines an
embedding of the curve X of degree m in Pr. More precisely, let Y = ϕE(X ), Qj = ϕE(Pj)
and Q = (Q1, . . . , Qn). Then Y is a curve in Pm−g of degree m and ϕE is an isomorphism from
X to Y. Now ϕE(E) ≡ Y · H for every hyperplane H of Pm−g(Fq). If moreover E is effective,
then ϕE(E) = Y · H for some hyperplane H of Pm−g(Fq). Let F = ϕE(E), then (Y,Q, F ) is a
representation of C that is strict isomorphic with (X ,P, E).

If m ≥ 2g+ 2, then I(Y) is generated by I2(Y). If moreover n > 2m, then I2(Q) = I2(Y). Now
CL(X ,P, E) is called a very strong algebraic geometry (VSAG) code if

2g + 2 ≤ m <
1

2
n or

1

2
n+ 2g − 2 < m ≤ n− 4.

It was shown that the representation by the triple (X ,P, E) of a VSAG code CL(X ,P, E) is unique
up to isomorphisms [16, 17, 18] and that such a triple can be retrieved efficiently [19].
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4 Error-correcting pairs and arrays from VSAG codes

Let C = CL(X ,P, E)⊥ be an AG code on a curve of genus g with designed minimum distance d∗

and m = deg(E) > 2g − 2. Let A = CL(X ,P, E − F ), B = CL(X ,P, F ) and C = CL(X ,P, E)⊥.
Then 〈A ∗ B〉 ⊆ C⊥. If moreover t = b(d∗ − 1 − g)/2c and deg(F ) = m − t − g, then (A,B) is a
t-ECP over Fq by [25, Theorem 1] and [26, Theorem 3.3]. So there are abundant ways to construct
error-correcting pairs of an AG code.

This approach needs the efficient computation of the Riemann-Roch spaces L(F ) and L(E−F )
and such algorithms are available. If e is sufficiently large and m > 4g − 3, then there exists a
b(d∗−1)/2c-ECP over Fqe by [28, Proposition 4.2], but no efficient way to obtain the pair is known.

In the following we construct ECP’s directly using subspaces of Fn
q and circumventing the use

of the Riemann–Roch spaces. If we take F = (m−t−g)P1 where P1 is the first rational point of P,
then L(E−F ) is a subspace of L(E), and A = CL(X ,P, E−F ) is a subspace of C⊥ = CL(X ,P, E).

In fact A is the space of those codewords in C⊥ that are zero at the first position of multiplicity
m− t− g and this multiplicity can be controlled, since we have computed I2(Q) efficiently. Define
B0 = 〈A ∗ C〉⊥, then B⊥0 = 〈A ∗ C〉 ⊆ B⊥. So d(B⊥0 ) ≥ d(B⊥) > t. Hence (A,B0) is a t-ECP for
C. There is one technical detail, note that P1 is in the support of E − F and F , but there is a
generalized way to define algebraic geometry codes, using a local parameter as explained in [19],
where it is no longer necessary to assume that P is disjoint from the support of the divisor E in
the definition of the code CL(X ,P, E).

Similarly we can decode up to b(d∗ − 1)/2c errors using arrays or well-behaving sequences and
majority voting [4, 5, 9, 10, 11].
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Abstract

The structure of additive multivariable codes over F4 (the Galois field with 4 elements) is
presented. This complete the study of the semisimple case that was specifically addressed by
the same authors before. These codes extend in a natural way the abelian codes, of which
additive are a particular case.

Keywords
Additive Multivariable Codes, Abelian Codes, Quantum Codes

Quantum codes are designed to detect and correct the errors produced in quantum computa-
tions [6, 7]. These codes can be constructed with the help of specific classical codes, called additive,
over F4 (the Galois field with 4 elements) [1]. An additive code of length n is a subgroup of Fn

4

under addition. The particular case of additive cyclic codes has been considered in [2]. An additive
code C is called cyclic if, whenever c = (c1 . . . cn) ∈ C, then its cyclic shift (c2 . . . cnc1) is also a
codeword in C. These codes are related to properties of the ring F4[X]/ < Xn − 1 >. In the case
n odd, the semisimple structure of this ring can be used to obtain a complete description of the
codes [3]. The case n even has been also considered [4].

In this paper we describe additive multivariable codes over the finite field F4 viewed as ideals of
the quotient ring F4[X1, . . . , Xr]/ < t1(X1), . . . , tr(Xr) > (where ti(Xi)X

ni
i − 1 ∈ F4[Xi] are fixed

polynomials). In the semisimple case (no-repeated roots) this structure was studied in [5]. The
structure of the rings A4 = F4[X1, . . . , Xr]/ < t1(X1), . . . , tr(Xr) > and A2 = F2[X1, . . . , Xr]/ <
t1(X1), . . . , tr(Xr) > is fundamental is this description.
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Abstract
In this contribution we show the structure on some codes over non-Abelian groups, namely

over D2m the dihedral group of 2m elements. We use the polycyclic presentation of D2m to
give a natural extension of Lee metric in this case and propose a structure theorem for such
codes.

Keywords
Codes over Groups, Polycyclic Codes, Dihedral Groups

Group codes are a generalization of linear codes which its underlying structure is defined over
an alphabet given by a group. These codes were first studied by Slepian in [7]. It has been shown
in [3] that Abelian group codes for the Hamming metric do not achieve the capacity of arbitrary
channels. It has also been conjectured that non-Abelian group codes are inferior to Abelian group
codes [1, 4, 3] in that case. Recently in [6] they proved that thre exist asymptotically good codes
over non-abelian groups.

Whereas properties of group codes for Hamming metric have been extensively studied not to
much is known in the non-abelian case for the Lee metric. Note that the Lee metric in the cyclic-
group case has provide some nice and optimal non-linear binary codes as their Gray maps (see for
example the seminal papers on this topic for block codes over Z4 the cyclic group with 4 elements
[5, 2]).

The first step when dealing with non-abelian groups is consider the class of polycyclic groups.
In this work we will consider codes over dihedral groups of 2m+1 elements. Based on the poly-
cyclic representation pcp(D2m) of D2m we shall define the natural Lee metric on such codes that
generalizes the well known Lee metric in the cyclic case. Based on the structure of pcp(D2m) we
shall derive a canonical form of this type of codes based on a chosen set of generators.
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Abstract

Error-correcting codes are introduced and widely for correcting errors when information
is transmited trhough noisy channels. A [n, k] linear error-correcting code is a k-dimensional
linear subspace C ⊆ Fn. Errors are corrected by using a decoding map. This is a mapping
dec : X → C, where C ⊂ X ⊆ Fn

2 and dec(c) = c for all codeword c ∈ C.
Different criteria have been proposed for constructing decoding maps. The most common so

far is minimum distance. Under this condition, dec(x) is taken as one of the nearest codewords
to x, with respect to the Hamming metric. It is well known that minimum distance decoding
guarantees that we can recover the right information when the number of errors is not too big.
The decoding dec is complete if X = Fn

2 . Very few complete decoding methods are known,
and except rare exceptions all of them are exponential in time and/or memory complexities.
However completeness is not really a major problem in coding theory. Since the main goal is
to recover the word sent by the sender, in most cases it is useless to obtain a different word as
a result of our decoding, even being this word closest to the received vector. This is just the
case when the nearest codeword is not unique. For this reason most efforts of coding-theorist
have turned to find efficient bounded minimum distance decoding methods.

In recent times, new appplications of coding theory have been found. In this presentation
we are interested in steganography. Roughly speaking, the purpose of a steganographic system
is to hide as much secret information as possible in a innocuous-like cover object (like a digital
image), making as few changes as posible in the cover, to reduce the chance of being detected
by third parties. This is done by using error-correcting codes and decoding maps.

In this new scenario, the classical choice of coding theorists –to dispense with the condition
of complete decoding– is no longer valid. Indeed, if cannot decode then we cannot embed infor-
mation, and our stegosysmen does not work. Remark also that for error-correction purposes,
errors of low weight are more probable, while for steganographic purposes, all vectors in Fn

2

are equally probable as covers.
Therefore, it seems appropriate now to consider new decoding algorithms, by relaxing the

condition of minimum distance. In this talk we present the first steps in this study.
Let C be a linear [n, k] code with distance d and systematic parity-check matrix H =

(H′|In−k). Let h1, . . . ,hn be the columns of H and let e1, . . . , en be the canonical basis of
Fn
2 . The syndrome of x ∈ Fn

2 can be used to give an estimate of d(x, C). This leads to the
following algorithm. Given a vector x ∈ Fn

2 ,

Input: The vector x to be decoded, the matrix H in systematic form.
0. [Initialization] dec← x
1. [Iteration] Repeat until s(dec) = 0:

find a coordinate i such that wt(s(dec) + hi) is minium among all columns of H
set dec← dec + ei

recompute the syndrome s(dec)
2. [Output] dec

requires at most wt(s(x)) ≤ n− k iterations and provides a decoding dec(x) = dec of x.
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Some properties of this decoding algorithm are the following.
(a) d(x, dec(x)) ≤ wt(s(x)).
(b) is wt(s(x)) ≤ d/2 then dec(x) is the nearest codeword to x in C.
(c) ρ(dec) ≤ n− k.
(d) ρ̃(dec) ≤ (n− k)/2.
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Error-correcting code, decoding, steganography
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Abstract

We are testing correcting properties of LDPC codes connected with the new families of
regular graphs of bounded degree and increasing girth. They form a family of expanding
graphs, some of them are in fact Ramanujan graphs. In the difference with previously known
graphs of large girth graphs from new families are not edge transitive. We compare spec-
tral gaps and key parameters of LDPC codes for new graphs with previously known results.
Some codes have visible advantage in comparison with codes obtained by Guinand and Lodge
corresponding to connected components of family D(n, q) [7].

Keywords
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1 Introduction

There are many different algorithms in everyday life where graphs are used. One of the most
interesting features of the new graphs is their expansion property. This property seems to be
significant in a lot of mathematical, computational and physical contexts. Another interesting
property of our graphs is the property of being a family of graphs of increasing girth. Such graphs
are used for example for constructions of error correcting codes. In this short paper we briefly
observe recent results on explicit constructions of families of expanding graphs of increasing girth.

Basically, only two explicit constructions of families of connected graphs of large girth and
superlinear size are known (Ramanujan-Cayley graphs [12], algebraic graphs CD(n, q)) given by
the nonlinear system of equations over finite field Fq). Lubotzky, Phillips and Sarnak [24] proved
that Ramanujan - Cayley graphs X(p, q), where p and q are primes, introduced by G. Margulis
[11] satisfy the Ramanujan graphs definition.

In this peper we present a method to obtain a new families of graphs with specific properties re-
quired in practical applications. We describe properties of obtained new families A′(n, q), A′′(n, q),
D′(n, q) in comparison to previously known families such as A(n, q) and D(n, q) which has been
known since 1995 [10]. However the main goal is to show how they can be used in practice for the
creation of error correcting codes.

By the theorem of Alon and Boppana, large enough members of an infinite family of q-regular
graphs with constant q satisfy the inequality λ ≥ 2

√
d− 1 − o(1), where λ is the second largest

eigenvalue in absolute value. Ramanujan graphs are d-regular graphs for which the inequality
λ ≤ 2

√
d− 1 holds.

We say that a family of regular graphs of bounded degree q of increasing order n has an
expansion constant c, c > 0 if for each subset A of the vertex set X, |X| = n with |A| ≤ n/2
the inequality |∂A| ≥ c|A| holds. The expansion constant of the family of q-regular graphs can
be estimated via upper limit q − λn, n → ∞, where λn is the second largest eigenvalue of family
representative of order n. It is clear that a family of Ramanujan graphs of bounded degree q has
the best expansion constant.

Gregory Margulis constructed the first family of expanders via studies of Cayley graphs of large
girth. Family of graphs Gn is a family of graphs of increasing girth if g(Gn) goes to infinity with
the growth of n. The family of graphs of large girth is an infinite family of simple regular graphs
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Γi of degree ki and order vi such that: g(Γi) ≥ γlogki
vi, where c is independent of i constant (see

[1], [2]).

2 Construction of the families

Let Fq, where q is prime power, be a finite field. CD(n, q) (connected components of D(n, q)) and
A(n, q) are connected, biregular, bipartite V = P ∪L families of graphs of increasing girth. Graphs
D(n, q), n ≥ 2 of fixed degree q form a family of expanders with the second largest eigenvalue
bounded from above by 2

√
q. A family A(n, q) of increasing girth, superlinear size and degree q

is given by the nonlinear system of equations. If q is fixed then the second largest eigenvalue of
A(n, q)is also bounded by 2

√
q. So, families A(n, q) and D(n, q) consist of ”almost Ramanujan

graphs”.
Let P and L be two copies of Cartesian power Fq

n, where n ≥ 2 is a integer. Brackets and
parenthesis will allow the reader to distinguish points and lines. If z ∈ Fn

q , then (z) ∈ P and
[z] ∈ L. First, we introduce the bipartite graph D(q) with the following points and lines, which
are infinite dimensional vectors over Fq written in the following way

(p) = (p0,1, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, ..., pi,i, p

′
i,i, pi,i+1, pi+1,1...),

[l] = [l1,0, l1,1, l1,2, l2,1, l2,2, l
′
2,2, l2,3, ..., li,i, l

′
i,i, li,i+1, li+1,1...].

The point (p) is incident with the line [l] ( (p)I[l]) , if the following relations between their coor-
dinates hold: 




l1,1 − p1,1 = l1,0p1,0
l1,2 − p1,2 = l1,1p1,0
l2,1 − p2,1 = l0,1p1,1
li,i − pi,i = l0,1pi−1,i
l′i,i − p′i,i = li,i−1p1,0
li,i+1 − pi,i+1 = li,i−1p1,0
li+1,i − pi+1,i = l0,1p

′
i,i

(1)

where i ≥ 2. The set of vertices of the graph D(q) of this infinite structure is V = P ∪ L and the
set of edges consisting of all pairs {(p), [l]} for which (p)I[l].

For each positive integer n > 2 we obtain a finite incidence structure (Pn, Ln, In)D as follows.
Firstly, Pn and Ln are obtained from P and L, respectively, by projecting each vector onto its n
initial coordinates with respect to the natural order. The incidence In is then defined by imposing
the first n − 1 incidence equations and ignoring all others. The graph corresponding to the finite
incidence structure (Pn, Ln, In) is denoted by D(n, q). D(n, q) become disconnected for n ≥ 6.
Graphs D(n, q) are edge transitive. It means that their connected components are isomorphic.
Connected component of D(n, q) is denoted by CD(n, q). Firstly LDPC codes based on graphs
CD(n, q) were described in [7]. They are still in practical use. Notice that all connected components
of infinite graph D(q) are q-regular trees.

Let us consider an alternative way of presentation of q-regular tree via equations over finite
field Fq We consider an infinite graph A(q) with the points and lines :

(p) = (p0,1, p1,1, p1,2, p2,2, p2,3, ..., pi,i, pi,i+1, ...),

[l] = [l1,0, l1,1, l1,2, l2,2, l2,3, ..., li,i, li,i+1, ...].

A(q) is a graph of infinite incidence structure (P,L, I)A such that point (p) is incident with the
line [l] ((p)I[l](, if the following relations between their coordinates hold:

{
li,i − pi,i = l1,0pi−1,i
li,i+1 − pi,i+1 = li,ip0,1

(2)

Like in the case of D(q) for each positive integer n > 2 we obtain an finite incidence structure
(Pn, Ln, In)A where Pn and Ln are obtained from P and L, respectively, by projecting each vector
onto its n initial coordinates with respect to the natural order. The incidence In is then defined
by imposing the first n− 1 incidence equations and ignoring all others. The graph corresponding
to the finite incidence structure (Pn, Ln, In) is denoted by A(n, q). Graphs A(n, q) are not edge
transitive. They are connected if q ≥ 2. In fact, A(n, q) form a family of small world graphs. There
is a conjecture that CD(n, q) is another family of small world graphs.
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Described families of graphs can be use to obtain new families with different structures. It can
be done by use of simple cubical operator on the vertex set of graph from one of the family, such
operator allow us to define a new relations. Let (v) = (v1, v2, ...vn) denote point, [v] = [v1, v2, ...vn]
denote line and Nt(v) be the operator of taking neighbor of vertex v where first coordinate is v1+t:
Nt(v1, v2, v3, ...vn) → [v1 + t, ∗, ∗, ..., ∗], Nt[v1, v2, v3, ...vn] → (v1 + t, ∗, ∗, ..., ∗). The remaining
coordinates can be determined uniquely using original relations defining used graph. As it follows
from the equations each vertex has exactly one neighbor of chosen color t. It is easy to see that
Nt is invertible operator on the set of vertices. To create a new family we can use the composition
of two such operators Nt ◦N0 on two copies of the same graph ( it is also possibility to take other
composition of such operators). For arbitrary graph G described above let I ′ denote the incidence
relation defined by using composition Nt ◦N0. Take two copies of G and denote point in first copy
by (p) and in second by 〈z〉. (p)I ′ 〈z〉 if for some t ∈ Fq relations (p)I[l]I 〈z〉 hold, where I is the
incidence relation ((1) or (2)) in based graph A(n, q) or D(n, q) described above. Both families
of graphs have a natural coloring of vertices ρ. We simply assume that the color t = ρ(v) of the
vertex v (point (p) or line [l]) is its first coordinate p0,1 or l1,0.

Let us define new binary relation on two copies of graph A(n, q): (p)I ′ 〈z〉 ⇔ when there exist
t ∈ Fq such that the following relations holds:





p0,1 = z0,1 − t
p1,1 = z1,1 + tp1,0
p1,2 = z1,2 + tp1,1 + tz0,1p0,1
p2,2 = z2,2 − tz0,1p1,1 − tz20,1p0,1
pi,i+1 = zi,i+1 + tpi,i + tz0,1pi−1,i
pi+1,i+1 = zi+1,i+1 − tz0,1pi,i − tz20,1pi−2,i−1

(3)

for i ≥ 2. Let denote a graph described by this system of equations by A′(n, q).
Graphs D′(n, q) with the notation for point and line as for D(n, q) is described by the following

relations (for t ∈ Fq): 



p0,1 = z1,0 − t
p1,1 = z1,1 + tz0,1
p1,2 = z1,2 + tp1,1 + tz0,1p0,1
p2,1 = z2,1 − tz1,0z1,0
pi,i = zi,i − tz0,1pi−1,i−1 − tp0,1z20,1
p′i,i = z′i,i + tpi,i−1 + tz0,1pi−1,i−1
pi,i+1 = zi,i+1 + tpi,i + tz0,1pi−1,i
pi+1,i = zi+1,i − tz0,1pi,i−1 − tz20,1pi−1,i−1

(4)

for i ≥ 2. All above mentioned constructions form a simple undirected families of graphs. Expan-
sion and other properties are shown below.
Proposition 1
Families A′(n, q) and D′(n, q) are expanders.
Proposition 2
Families A′(n, q) and D′(n, q) for q = 3 are q-regular Ramanujan graphs λ1 ≤ 2

√
3− 1 and they

density is 4
3(3n+1−1) .

Proposition 3
Families A′(n, q) and D′(n, q) are families of graphs of increasing girth (with growing n). For all
n ≥ 2 there is no cycles of length 4. D′(n, q) form a family of a large girth.
Proposition 4
There is no transitive groups defined on the graphs A′(n, q) and D′(n, q).

3 Corresponding LDPC codes

Presented construction leads us to families of graphs that can be successfully used in coding theory
to create LDPC codes.

Margulis and other authors for gave an interesting construction of error correcting codes LDPC
based on expanders from the family of Cayley - Ramanujan , but in 2003 D. MacKay together with
M. Postol showed the weaknesses of this construction [21]. These codes include the codewords of
small weight, thus they can’t be used in practice. Since 1997 when the first time graphs CD(n, q)
have been used to create LDPC codes, which are applied by NASA there were no results, that
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would indicate a weak properties of codes derived from them. Therefore very good and economic
codes can be obtained by studying algebraic structures with similar properties.

To create LDPC code with codeword of length N we use A′(n, q) or D′(n, q) where nq > N .
Each of these graphs is already bipartite but q-regular instead of biregular. We can make it by
the method described for graphs D(n, q) in [10]. Bidegree reduction can only increase the girth so
there is no short cycles. After bidegree reduction the graph can be disconnected and divided into
several components. To create a parity checks matrix we use to only one component. We decide
to put one or zero in a parity check matrix by checking if relations (3) or (4) on coordinates of
individual points and lines are satisfied. Reducing bidegrees to e < q and f gives code rate 1− e

f .

It can be proved that these new families of graphs have increasing girth (with increasing n) and
are not edge transitive, so we can call them pseudorandom. This is the reason why obtained codes
have different properties for different chosen parameters (subset A and B described below). In a
case of graphs A(n, q) and D(n, q) it does not matter which elements contain the subsets A and
B, we are only interested in how many elements they contain. Graphs from these families do not
have short cycles ( length 4 or less) so this fact provides the convergence of decoding algorithm.

Let consider the minimum distance analysis for described codes. Presented families of graphs
have increasing girth so we can construct LDPC codes with arbitrary large girth. In [17] Tanner
proved the following lower bound on dmin in terms of girth g and bit node degree e:

dmin ≥
2[(e− 1)g/4 − 1]

e− 2
, where g/2 is even

dmin ≥
[e(e− 1)bg/4c − 2]

e− 2
, where g/2 is odd

Combining Proposition 3 and above mentioned inequalities, we see that LDPC codes, cor-
responding to presented families of graphs, can be designed to have arbitrarily large minimum
distance dmin.

We were testing LDPC codes corresponding to designed families of graphs by using BPSK mod-
ulation over AWGN channel and simple MAP decoder implementation. Our simulations showed
that codes, based on representatives of new described families, have most frequently better error
correcting properties than codes based on D(n, q). This fact is supported by many simulations
conducted for randomly chosen parameters. Fig. 1 shows the relationship between bit error rate
(the ratio of number of received incorrect bits to total length of received codeword) and power of
signal.

Figure 1: Bit error rate for codes based on graphs D′(n, q) on left side and based on graphs
A′(n, q) on right side, with parameters: n = 6 and q = 7–blue, n = 3 and q = 7–green, n = 5 and
q = 5–purple.
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Abstract

Let Z2 be the ring of integers modulo 2 and let Zn
2 be the set of all binary vectors of length

n. The Hamming distance d(u, v) between two vectors u, v ∈ Zn
2 is the number of coordinates

in which u and v differ. The Hamming weight wt(u) of u ∈ Zn
2 is wt(u) = d(u,0), where 0 is

the all-zero vector of length n. A (n,M, d) binary code C is a subset of Zn
2 with M codewords

and minimum Hamming distance d. The minimum Hamming distance, denoted by d(C), is
the minimum value of d(u, v) for all u, v ∈ C and u 6= v.

Two binary codes C1 and C2 of length n are said to be equivalent if there exists a vector
a ∈ Zn

2 and a coordinate permutation π such that C2 = {a + π(c) : c ∈ C1}. Note that two
equivalent codes have the same minimum distance. If C is linear, then 0 ∈ C; but if C is
nonlinear, then 0 does not need to belong to C. In this case, we can always consider a new
binary code C′ = C + c for any c ∈ C, which is equivalent to C, such that 0 ∈ C′. Therefore,
from now on, we assume that 0 ∈ C.

Given a binary code C, the problem of storing C in memory is a well known problem.
If C is linear, that is, it is a subgroup of Zn

2 , then it can be compactly represented using a
binary generator matrix. On the other hand, if C is nonlinear, then a solution would be to
know whether it has another structure or not. For example, there are binary codes which have
a Z4-linear or Z2Z4-linear structure and, therefore, they can also be compactly represented
using a quaternary generator matrix. In general, binary codes without any of these structures
can be represented as the union of cosets of a binary linear subcode of C. This allows us to
represent them as a set of representative codewords instead of as a set with all codewords.

The kernel of a binary code C is defined as K(C) = {x ∈ Zn
2 : x+C = C}. Since 0 ∈ C,

K(C) is a binary linear subcode of C. We denote by k the dimension of K(C). In general, C
can be written as the union of cosets of K(C), and K(C) is the largest such linear code for
which this is true [1]. Therefore,

C =

t⋃

i=0

(
K(C) + ci

)
, (1)

where c0 = 0, t+ 1 = M/2k and M = |C|. Note that we can represent C as the kernel K(C)
plus the coset leaders L = {c1, . . . , ct}. It is important to emphasize that the codewords in
L are not necessarily the ones having minimum weight in the coset. Since K(C) is linear,
it can be compactly represented by its binary generator matrix G of size k × n. Therefore,
considering L as the matrix where in the t rows there are the coset leaders, the binary code C
can be also represented by the matrix

(
G
L

)
. Since the kernel takes up a memory space of order

O(nk), the kernel plus the t coset leaders take up a memory space of order O(n(k + t)).
For example, applying this representation to the set of all completely classified binary

perfect codes of length 15 and extended perfect codes of length 16, we obtain very significant
compression rates. It is known that there are exactly 5983 binary perfect codes of length 15
and 2165 binary extended perfect codes of length 16, each one having 2048 codewords [2]. In
the first case, instead of taking up 5983 ·2048 ·4 = 49012736 hexadecimal numbers by encoding
each codeword in hexadecimal notation, it only takes 3677928 hexadecimal numbers by storing
the codewords of a generator matrix of the kernel and the set of coset leaders for each binary
code. This gives a compression rate of 92.5%. Similarly, in the second case, the extended
perfect codes of length 16 can be compressed from 2165 · 2048 · 4 = 17735680 hexadecimal
numbers to 1439336, which gives a compression rate of 91.9%.

In order to compute the kernel and coset leaders of a binary code C of length n, according
to the definition of K(C), it is necessary to classify the M codewords of C. Since M = 2k(t+1),
the algorithm must be at least exponential on k, the dimension of K(C). A straightforward
algorithm to compute the kernel from the definition of K(C) requires M2 logM operations,
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if C is sorted. However, this algorithm can be improved using the following two properties:
(1) if K′ ⊆ K(C), then v ∈ K(C) if and only if K′ + v ⊆ K(C); (2) if K′ ⊆ K(C), v ∈ C
and (C\K′) + v ⊆ C, then v ∈ K(C). Therefore, depending on k, the complexity can be
reduced. If k = 0 we still need M2 logM operations, but if k > 0 we obtain a complexity of
order O(kM logM). Note that, for large M , kM �M2.

Although the exponential behaviour of the kernel computation, using the representation
given above, we can manipulate and construct new binary nonlinear codes from old ones in
a more efficient way. Specifically, we show how to establish the equality and inclusion of two
given nonlinear codes from their kernels and coset leaders, and how to compute the kernel and
coset leaders of related new codes (union, intersection, extended, punctured, shorten, direct
sum, Plotkin sum) from given ones, which are represented in this structure. All these results
will be written to be implemented easily as algorithms.

Given a binary code C, the problem of computing its minimum distance is also important,
and necessary in order to establish its error-correcting capability. This problem is computa-
tionally difficult, and has been proven to be NP-hard. If C is linear, the minimum distance
coincides with the minimum weight, denoted by wt(C), and the Brouwer-Zimmerman min-
imum weight algorithm for linear codes over finite fields [3] can be used. We propose new
algorithms to compute the minimum weight and minimum distance of a binary nonlinear code
C, based on the coset structure and the known algorithms for linear codes. Given a binary
code C and a vector v ∈ Zn

2 , let Kv = K(C) ∪ (K(C) + v). Since K(C) is linear, then Kv is
also linear.

Proposition 1 Let C =
⋃t

i=0(K(C) + ci) with t ≥ 2. Then, the minimum weight of C can
be computed as min({wt(Kci) : i = 1, . . . , t}), and the minimum distance as min({wt(Kci) :
i = 1, . . . , t} ∪ {wt(Kci+cj ) : i, j = 1, . . . , t and i < j}).

Using Proposition 1 and applying the known Brouwer-Zimmermann algorithms, we can
compute the minimum weight and distance of a binary nonlinear code. Note that the com-
plexity of these two algorithms depends strongly on the number of coset leaders t. For the
minimum weight, we compute t times the minimum weight of a linear code Kv, and for the
minimum distance,

(
t+1
2

)
times. An estimate of the total work an algorithm performs is referred

to as work factor [4]. We study the work factors for these algorithms to compare them with
brute force. An improvement is given to the proposition by avoiding repeated computations
in each coset.

Finally, the previous algorithm can also be used to decode a binary linear code C. For a
received vector u ∈ Zn

2 , in order to decode it as a codeword from C, we look for a vector e of
minimum weight such that u− e ∈ C. This is equivalent to find a vector e of minimum weight
in the coset containing u, which is C + u.

Proposition 2 Let C be a binary linear code with minimum distance d. For a received vector
u = c+ e 6∈ C, where c ∈ C, let Cu = C ∪ (C+u). If wt(e) < d, then the received vector u can
be decoded as c′ = u−e′ ∈ C, where e′ is a vector of minimum weight in Cu, so wt(e) = wt(e′).
Note that if wt(e) ≤ b d−1

2
c, then e′ = e and c′ = c.

In this way, we can decode a received vector as long as less than d errors have been added to
the transmitted codeword. When d or more than d errors occurs during the transmission, the
minimum vector of Cu could come from C, and an error vector e can not be found. Therefore,
the method provides a complete decoding but only up to d−1 errors. Note that if the covering
radius of C, denoted by ρ, satisfies ρ ≤ d− 1, that is when C is a maximal code, we actually
obtain a complete decoding.

Keywords
binary nonlinear codes, kernel, minimum distance, decoding
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EXTENDED ABSTRACT

We are going to observe interpretations of q-regular forest (q-regular simple graph without
cycles) in terms of algebraic geometry over finite field Fq. More precisely we are interested in
sequences of q-regular algebraic graphs Γi, defined by nonlinear equations, such that their projective
limit T is well defined and does not contain cycles. So, the girth of Γi is growing with the growth
of parameter i. We assume additionally that Γi, i → ∞ is a family of expanders. So the upper
limit of second largest eigenvalues of Γi is bounded away from q.

The talk is dedicated to new applications of such simple graphs of increasing girth with good
expansion properties to the and designing of cryptographical algorithms (stream ciphers, key ex-
change protocols, public key algorithms digital signatures,constructions of hash functions). We
speak about the usage of classical explicit constructions (see [6] and further references) as well as
applications of the new families of graphs.

Recall that the girth is the length of minimal cycle in the simple graph. Studies of maximal
size ex(C3, C4, . . . , C2m, v) of the simple graph on v vertices without cycles of length 3, 4, . . . , 2m,
i.e. graphs of girth > 2m, form an important direction of Extremal Graph Theory. As it follows
from famous Even Circuit Theorem by P. Erdős’ we have inequality

ex(C3, C4, . . . , C2m, v) ≤ cv1+1/m,

where c is a certain constant. The bound is known to be sharp only for m = 2, 3, 5. The first
general lower bounds of kind

ex(v, C3, C4, . . . Cn) = Ω(v1+c/n),

where c is some constant < 1/2 were obtained in the 50th by Erdős’ via studies of families of
graphs of large girth, i.e. infinite families of simple regular graphs Γi of degree ki and order vi such
that

g(Γi) ≥ clogkivi,

where c is the independent of i constant. Erdős’ proved the existence of such a family with arbitrary
large but bounded degree ki = k with c = 1/4 by his famous probabilistic method.

Just two explicit families of regular simple graphs of large girth with unbounded girth and
arbitrarily large k are known: the family X(p, q) of Cayley graphs for PSL2(p), where p and
q are primes, had been defined by G. Margulis [5] and investigated by A. Lubotzky, Sarnak [2]
and Phillips, and the family of algebraic graphs CD(n, q) [3]. The best known lower bound for
d 6= 2, 3, 5 had been deduced from the existence of mentioned above families of graphs

ex(v, C3, C4, . . . , C2d) ≥ c(v1+2/(3d−3+e))

where e = 0 if d is odd, and e = 1 if d is even.
By the theorem of Alon and Boppana, large enough members of an infinite family of q-regular

graphs satisfy the inequality λ ≥ 2
√
q − 1 − o(1), where λ is the second largest eigenvalue in

absolute value. Ramanujan graphs are q-regular graphs for which the inequality λ ≤ 2
√
q − 1
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holds. We say that regular graphs of bounded degree q form a family of Ramanujan graphs if the
second lagest eigenvalue of each graph is bounded from above by 2

√
q − 1

It is clear that a family of Ramanujan graphs of bounded degree q has the best possible spectral
gap q − λ. We say, that family of q-regular graphs Γi is a family of almost Ramanujan graphs if
its second largest eigenvalues are bounded above by 2

√
q.

The mentioned above family X(p, q) is a family of Ramanujan graphs. That is why we refer
to them as Cayley - Ramanujan graphs. The family CD(n, q) is a family of almost Ramanujan
graphs. It is known that if q ≥ 5 these graphs are not Ramanujan despite the projective limit
CD(q) of CD(n, q) is a q-regular tree. The reason is that the eigenspace of CD(q) is not a Hilbert
space (topology is p-adic).

Expanding properties of X(p, q) and D(n, q) and the and high girth property of both families
can be used for the construction of fast stream ciphers with good mixing properties[8]. Notice
that both properties had been use for construction of good class of LDPC error correcting codes
which is an important pratical tool of security for satellite communications. The usage of CD(n, q)
as Tanner graphs producing LDPC codes lead to better properties of corresponding codes in the
comparison with the use of Cayley - Ramanujan graphs (see [4]).

Both families X(p, q) and CD(n, q) are consist of edge transitive graphs, their expansion prop-
erties and property to be graphs of large girth hold also for random graphs, which have no auto-
morphisms at all. To make better deterministic approximation of random graph we can look at
regular expanding graphs of increasing girth without edge transitive automorphism group (see [7]).

THEOREM For each prime power q, q ≥ 3 there exist a family of q-regular bipartite almost
Ramanujan graphs of large girth without edge transitive automorphism group.

The proof of the theorem is based on new explicit construction of the families satisfying con-
dition of formulated above theorem. The new cryptographical algorithms based on walks of new
graphs and their analogs defined over arithmetical rings will be presented at the conference.

The important direction of Multivariate Cryptography is a search for a families of invertible
polynomial maps fn of Fnq with the degree bounded degree (usually degrees are 2 or 3), such that
the growth of degree f−1n with the growth of n is supported by mathematical statement (see [1]
an further references). Absence of mathematical theory here motivates alternative research on
cryptographical applications of computable multivariate functions fn with the degree cn, c > 0 for
fn and its inverse.

We present pseudocubical cryptosystem from this class, such that the list of cubical public
rules are given in terms of standard variables x1, x2, . . . , xn corresponding to characters from the
plainspace and extra characters y1, y2, . . . , yt, where t = f(n) is a certain linear function from n.
The list of rules is of kind

xi → gi(x1, x2, . . . , xn, y1, y2, . . . , yt), i = 1, 2, . . . , n,

where fi are cubical expressions and recursive ”compression rules”:

y1 → h1(x1, x2, . . . , xn, ),

y2 → h2(x1, x2, . . . , xn, y1, ),

y3 → h3(x1, x2, . . . , xn, y1, y2),

· · ·
yt → ht(x1, x2, . . . , xn, y1, y2, . . . , yt−1).

The resulting encryption map has degree cn, c ≥ 1/4. So the algorithm is resistant against plain
linearisation attacks. We can prove that the order of the map is growing to infinity with the growth
of parameter n.

Traditionally one subset of vertices of a bipartite graphs is denoted by V1 = P and called a set
of points and another one V2 = L is called a set of lines. Let K be a commutative ring, P and L be
two copies of Cartesian power Kn, where n ≥ 2 is an integer. Brackets and parenthesis will allow
the reader to distinguish points and lines. In this note we assume that if z ∈ Kn , then (z) ∈ P
and [z] ∈ L.

Let us introduce an infinite bipartite graph D(K) defined on sets of points of kind

(x) = (x1, x2, x3, x
′
3, . . . , xn, x

′
n, . . . )
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and lines of kind
[y] = [y1, y2, y3, y

′
3, . . . , yn, y

′
n, . . . ]

via incidence relation I : (x)I[y] if and only if the following relations hold

x2 − y2 = y1x1,

x3 − y3 = x1y2,

x4 − y4 = y1x3,

x5 − y5 = x1y4,

. . .

together with equalities

x′3 − y′3 = y1x2,

x′4 − y′4 = x1y
′
3,

x′5 − y′5 = y1x
′
4,

. . . .

If n is odd then xn − yn = x1yn−1 and x′n − y′n = y1x
′
n−1. If n is even then xn − yn = y1xn−1 and

x′n − y′n = x1y
′
n−1.

We also consider the family of graphs B(m,n,K) for case m ≤ n, whose vertices are points of
kind

(x) = (x1, x2, x3, x
′
3, . . . , xm+2, x

′
m+2, x

′
m+3, x

′
m+4, . . . , x

′
n+2)

from set Pm,n = Km+n+2 and lines of kind

[y] = [y1, y2, y3, y
′
3, . . . , ym+2, y

′
m+2, y

′
m+3, y

′
m+4, . . . , y

′
n+2]

from Lm,n = Km+n+2 such that (x) and [x] are incident if and only if relations from the written
above list holds for variables
{x1, x2, x3, x′3, . . . , xn+2, x

′
n+2, x

′
n+3, . . . , x

′
m+2}∪{y1, y2, y3, y′3, . . . , ym+2, y

′
m+2, y

′
m+3, . . . , y

′
n+2}. We

refer to written above list as list of variables of graph B(m,n,K).
There is a natural homomorphism φm,n from D(K) onto B(m,n,K) defined via procedure of

deleting coordinates of infinite points (x) and lines [y] which do not belong to written above finite
list.

If K = Fq be the finite fields of q elements then B(m,n,K) = B(m,n, q). We have the fol-
lowing results:

PROPOSITION The projective limit of B(m,n,K) = B(m,n, q) if n → ∞ is an forest con-
sisting of t = [m/2] infinite q-regular trees.

THEOREM If m = cn + d, c > 0 then family of algebraic graphs B(m,n, q) is a q-regular
bipartite almost Ramanujan graphs of large girth without edge transitive automorphism group.

We define the colour ρ(v) of vertex v (point or line) from B(m,n,K) as first coordinate of
corresponding tuple. For each vertex v of the graph B(m,n,K) there is exactly one neighbour
Nα(v) of colour ρ(v) + α for chosen α ∈ K. The map v → N(v) is a bijection.

We can prove that all connected components of graphs B(m,n,K) are isomorphic. Let us
denote by CB(m,n,K) the graph isomorphic to connected component of B(m,n,K). Let N ′α
be the restriction of the operator Nα onto the set of vertices of chosen connected component
CB(m,n,K). If charK 6= 2 then connected component of the graph is the solution variety for the
system of equations

a1(v) = b1,

a2(v) = b2,

. . .

at(v) = bt.

One can eliminate t = [m/2] variables in operator Nα using the above system of equations and
this way determine the operator N ′α. In our cryptographic algorithms we using this operators to
increase the security.
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Abstract

Let ` > 0 be a square-free integer, ` ≡ 3 mod 4, K = Q(
√
−`), and OK the ring of integers

of K. Codes C over rings R := OK/pOK determine lattices Λ`(C) over K. The theta series
θΛ`(C) of such lattice can be written in terms of the complete weight enumerator of C. For
any `′ > ` the first `+1

4
terms of their corresponding theta functions are the same with those

of Λ`(C). In [6] it was conjectured that for ` > p(n+1)(n+2)
2

there is a unique complete weight
enumerator corresponding to a given theta function. In this paper, we explore this conjecture
and some new computational results.

Keywords
Codes, theta functions, complete weight enumerators

1 Introduction

Let ` > 0 be a square-free integer congruent to 3 modulo 4, K = Q(
√
−`) be the imaginary

quadratic field, and OK its ring of integers. Codes, Hermitian lattices, and their theta-functions
over rings R := OK/pOK , for small primes p, have been studied by many authors, see [1], [4], [5],
among others. In [1], explicit descriptions of theta functions and MacWilliams identities are given
for p = 2, 3. In [7] we explored codes C defined over R for p > 2. For any ` one can construct
a lattice Λ`(C) via Construction A and define theta functions based on the structure of the ring
R. Such constructions suggested some relations between the complete weight enumerator of the
code and the theta function of the corresponding lattice. In this paper we further study the weight
enumerators of such codes in terms of the theta functions of the corresponding lattices.

For any prime p with p - `, let R := OK/pOK =
{
a+ bω : a, b ∈ Fp, ω2 + ω + d = 0

}
, where

d = (`+ 1)/4. We have the map

ρ`,p : OK → OK/pOk =: R

A linear code C of length n over R is an R-submodule of Rn. The dual is defined as C⊥ =
{u ∈ Rn : u · v̄ = 0 for all v ∈ C}. If C = C⊥ then C is self-dual. We define

Λ`(C) := {u = (u1, . . . , un) ∈ OnK : (ρ`,p(u1), . . . , ρ`,p(un)) ∈ C},

In other words, Λ`(C) consists of all vectors in OnK in the inverse image of C, taken componentwise
by ρ`,p. This method of lattice construction is known as Construction A.

Let τ ∈ H = {z ∈ C : Im(z) > 0}, the upper-half plane. And let q = eπiτ . For any lattice Λ in
Kn, we have an associated theta function θΛ(q), given by

θΛ(q) =
∑

z∈Λ

qz·z̄,

where “·” denotes the usual dot product and z̄ denotes component-wise conjugation. Thus, for
any linear code C, we have an associated lattice Λ`(C) and associated theta function θΛ`(C)(q).
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For notation, let ra+pb+1 = a − bω, so R =
{
r1, . . . , rp2

}
. For a codeword u = (u1, . . . , un) ∈

Rn and ri ∈ R, we define the counting function ni(u) := #{j : uj = ri}. The complete weight
enumerator of the R code C is the polynomial

cweC(z1, z2, . . . , zp2) =
∑

u∈C
z
n1(u)
1 z

n2(u)
2 . . . z

np2 (u)

p2 . (1)

We can use the complete weight enumerator polynomial to find the theta function of the lattice
Λ`(C). For a proof of the following result see [7].

Lemma 1. Let C be a code defined over R and cweC its complete weight enumerator as above.
For integers a and b and a prime p, let Λa,b denote the lattice a− bω` + pOK . Then,

θΛ`(C)(q) = cweC(θΛ0,0
(q), θΛ1,0

(q), . . . , θΛp−1,p−1
(q)).

Note that the q2 arguments of this polynomial can be computed in terms of certain one-
dimensional theta series which are defined in Section 2.1 of [7].

In [2], for p = 2, the symmetric weight enumerator polynomial sweC of a code C over a ring or
field of cardinality 4 is defined to be

sweC(X,Y, Z) = cweC(X,Y, Z, Z).

For ΛΛ`(C)(q), the lattice obtained from C by Construction A, by Theorem 5.2 of [2], one can then
write

θΛ`(C)(q) = sweC(θΛ0,0
(q), θΛ1,0

(q), θΛ0,1
(q)).

These theta functions are referred to as Ad(q), Cd(q), and Gd(q) in [2] and [8].

Remark 1. The connection between complete weight enumerators of self-dual codes over Fp and
Siegel theta series of unimodular lattices is well known. Construction A associates to any length n
code C = C⊥ an n-dimensional unimodular lattice; see [3] for details.

For p > 2, however, there are (p+1)2

4 theta functions associated to the various lattices, so our
analog of the symmetric weight enumerator polynomial needs more than 3 variables.

Problem 1. Determine an explicit relation between theta functions and the symmetric weight
enumerator polynomial of a code defined over R for p > 3.

We expect that the answer to the above problem is that the theta function is given as the
symmetric weight enumerator sweC of C, evaluated on the theta functions defined on cosets of
OK/pOK .

2 Theta functions and the corresponding complete weight
enumerator polynomials

For a fixed prime p, let C be a linear code over R = Fp2 or Fp × Fp of length n and dimension
k. An admissible level ` is an integer ` such that OK/pOK is isomorphic to R. For an admissible
`, let Λ`(C) be the corresponding lattice as in the previous section. Then, the level ` theta
function θΛ`(C)(q) of the lattice Λ`(C) is determined by the complete weight enumerator cweC
of C, evaluated on the theta functions defined on cosets of OK/pOK . We consider the following
questions. How do the theta functions θΛ`(C)(q) of the same code C differ for different levels `?
Can non-equivalent codes give the same theta functions for all levels `?

We give a satisfactory answer to the first question (cf. Theorem 1, Lemma 2) and for the second
question we conjecture that:

Conjecture 1. Let C be a code of size n defined over R and θΛ`(C) be its corresponding theta
function for level `. Then, for large enough `, there is a unique complete weight enumerator
polynomial which corresponds to θΛ`(C).

Let C be a code defined over R for a fixed p > 2. Let the complete weight enumerator of C be
the degree n polynomial cweC = f(x1, . . . , xr), for r = p2. Then from Lemma 1 we have that

θΛ`(C)(q) = f(θΛ0,0
(q), . . . , θΛp−1,p−1

(q))

for a given `. First we want to address how θΛ`(C)(q) and θΛ`′ (C)(q) differ for different ` and `′.
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Theorem 1. Let C be a code defined over R. For all admissible `, `′ with ` < `′ the following
holds

θΛ`(C)(q) = θΛ`′ (C)(q) +O(q
`+1
4 ).

Proof. See [6] for details.
We have the following lemma; see [6].

Lemma 2. Let C be a fixed code of size n defined over R and θ(q) =
∑
λiq

i be its theta function
for level `. Then, there exists a bound B`,p,n such that θ(q) is uniquely determined by its first B`,p,n
coefficients.

For notation, when p and n are fixed, we will let B` = B`,p,n. To extend the theory for p = 2
to p > 2 we have to find a relation between the theta function θΛ`(C) and the number of complete
weight enumerator polynomials corresponding to it.

Fix an odd prime p and let C be a given code of length n over R. Choose an admissible value of

` such that there are (p+1)2

4 independent theta functions. Then, the complete weight enumerator

of C has degree n and r = (p+1)2

4 variables x1, . . . , xr. We call a generic complete weight
enumerator polynomial a homogenous polynomial P ∈ Q[x1, . . . , xr].

Denote by P (x1, . . . , xr) a generic r-nary, degree n, homogeneous polynomial. Assume that
there is a length n code C defined over R such that P (x1, . . . , xr) is the symmetric weight enu-
merator polynomial. In other words,

sweC(x1, . . . , xr) = P (x1, . . . , xr)

Fix the level `. Then, by replacing

x1 = θΛ0,0
(q), . . . . . . , xr = θΛp−1,p−1

(q),

we compute the left side of the above equation as a series
∑∞
i=0 λiq

i. By equating both sides of∑∞
i=0 λiq

i = P (x1, . . . , xr), we can get a linear system of equations. Since the first λ0, . . . , λB`−1

determine all the coefficients of the theta series then we have to pick B` equations (these equations
are not necessarily independent).

Consider the coefficients of the polynomial P (x1, . . . , xr) as parameters c1, . . . cs. Then, the
linear map

L` : Cs → CB`−1

(c1, . . . cs) 7→ (λ0, . . . , λB`−1)

has an associated matrix M`. For a fixed value of (λ0, . . . , λB`−1), determining the rank of the
matrix M` would determine the number of polynomials giving the same theta series. There is a
unique complete weight enumerator corresponding to a given theta function when

null (M`) = s− rank (M`) = 0

Conjecture 2. For ` ≥ p(n+1)(n+2)
n − 1 we have null M` = 0, or in other words

rank (M`) =

(
n− 1 + (p+1)2

4

)
!

n! ·
(

(p+1)2

4 − 1
)

!

The choice of ` is taken from experimental results for primes p = 2 and 3. More details are
given in the next section.

It is obvious that Conjecture 2 implies Conjecture 1. If Conjecture 1 is true then for large
enough ` there would be a one to one correspondence between the complete weight enumerator
polynomials and the corresponding theta functions. Perhaps, more interesting is to find ` and p
for which there is not a one to one such correspondence. Consider the map

Φ(`, p) = (λ0(`, p), . . . , λB`−1(`, p)) ,

where λ0, . . . , λB`−1 are now functions in ` and p. Let V be the variety given by the Jacobian of
the map Φ. Finding integer points `, p on this variety such that ` and p satisfy our assumptions
would give us values for `, p when the above correspondence is not one to one. However, it seems
quite hard to get explicit description of the map Φ. Next, we will try to shed some light over the
above conjectures for fixed small primes p.
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3 Bounds for small primes

In [8] we determine explicit bounds for the above theorems for prime p = 2. In this section we give
some computation evidence for the generalization of the result for p = 3 . We recall the theorem
for p = 2.

Theorem 2 ([8], Thm. 2). Let p = 2 and C be a code of size n defined over R and θΛ`
(C) be its

corresponding theta function for level `. Then the following hold:

i) For ` < 2(n+1)(n+2)
n − 1 there is a δ-dimensional family of symmetrized weight enumerator

polynomials corresponding to θΛ`
(C), where

δ ≥ (n+1)(n+2)
2 − n(`+1)

4 − 1.

ii) For ` ≥ 2(n+1)(n+2)
n − 1 and n < `+1

4 there is a unique symmetrized weight enumerator polyno-
mial which corresponds to θΛ`

(C).

These results were obtained by using the explicit expression of theta in terms of the symmetric
weight enumerator valuated on the theta functions of the cosets.

Next we want to find explicit bounds for p = 3 as in the case of p = 2. In the case of
p = 3 it is enough to consider four theta functions, θΛ0,0(q), θΛ1,0(q), θΛ0,1(q), and θΛ1,1(q) since
θΛ2,0(q) = θΛ1,0(q) , θΛ2,2(q) = θΛ1,1(q) and θΛ0,2(q) = θΛ1,2(q) = θΛ2,1(q) = θΛ0,1(q). If we are
given a code C and its weight enumerator polynomial then we can find the theta function of the
lattice constructed from C using Construction A. Let θ(q) =

∑∞
i=0 λiq

i be the theta series for level
` and

p(x, y, z, w) =
∑

i+j+k+m=n

ci,j,kx
iyjzkwm

be a degree n generic 4-nary homogeneous polynomial. We would like to find out how many
polynomials p(x, y, z, w) correspond to θ(q) for a fixed `. For a given ` find θΛ0,0

(q), θΛ1,0
(q),

θΛ0,1
(q) and θΛ1,1

(q) and substitute them in the p(x, y, z, w). Hence, p(x, y, z, w) is now written as
a series in q. We get infinitely many equations by equating the corresponding coefficients of the
two sides of the equation

p(θΛ0,0
(q), θΛ1,0

(q), θΛ0,1
(q), θΛ1,1

(q)) =

∞∑

i=0

λiq
i.

Since the first λ0, . . . , λB`−1 determine all the coefficients of the theta series then it is enough to
pick the first B` equations. The linear map

L` : (c1, . . . c20) 7→ (λ0, . . . , λB`−1)

has an associated matrix M`. If the nullity of M` is zero then we have a unique polynomial that
corresponds to the given theta series. We have calculated the nullity of the matrix and B` for
small n and `.

Example 1 (The case p = 3, n = 3). The generic homogenous polynomial is given by

P (x, y, z) = c1x
3 + c2x

2y + c3x
2z + c4x

2w + c5xy
2 + c6xz

2 + c7xw
2 + c8xyz

+ c9xyw + c10xzw + c11y
3 + c12y

2z + c13y
2w + c14yz

2 + c15yw
2

+ c16yzw + c17z
3 + c18z

2w + c19zw
2 + c20w

3.

(2)

The system of equations can be written by the form of

A~c = ~λ

where ~c =
(
c1 c2 · · · c20

)t
, ~λ =

(
λ0 λ1 · · · λ15

)t
. In the case of ` = 7 the matrix M7 has

null (M7) = 4. We have a positive dimension family of solution set. The case of ` = 11 the matrix
M11 has null (M11) = 1. For any case where ` ≥ 19 the nullity of the matrix is 0. Hence, for
every given theta series, there is a unique symmetric weight enumerator polynomial. .

We summarize the results in the following table:
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` n = 3 n = 4 n = 5
B` null M` B` null M` B` null M`

7 16 4 26 9 33 24
11 19 1 30 5 42 14
19 22 0 38 0 60 0
23 25 0 37 0 58 0
31 31 0 41 0 60 0
35 34 0 48 0 61 0
43 40 0 55 0 69 0
47 43 0 60 0 74 0
55 49 0 70 0 86 0
59 52 0 75 0 92 0

Recall that ` ≡ 3 mod 4 and p - `. It seems from the table that the same bound of B` =
2(n+1)(n+2)

n as for p = 2 holds also for p = 3, n = 3.
We have the following conjecture for general p, n and `.

Conjecture 3. For a given theta function θΛ`(C) of a code C for level ` there is a unique complete

weight enumerator polynomial corresponding to θΛ`(C) if ` ≥ p(n+1)(n+2)
n .

It is interesting to consider such question for such lattices independently of the connection to
coding theory. What is the meaning of the bound B` for the ring OK/pOK? Do the theta functions
defined here correspond to any modular forms? Is there any difference between the cases when the
ring is Fp × Fp or Fp2?
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Abstract

Solving systems of boolean polynomial equations is a kernel problem in algebraic compu-
tations and Gröbner basis is one of the most important tools to solve such systems.

In 2009, Sun and Wang proposed an algorithm for computing a branch Gröbner system
[8, 9] based on the matrix version of the F5 algorithm [4]. For a set of boolean polynomials,
their algorithm uses the F5 algorithm to compute a Gröbner basis, and creates branches
before constructing huge matrices, such that the computing complexity for each branch can
be controlled in a relative low level. Their algorithm uses zero-suppressed binary decision
diagrams (ZDD) to store Boolean polynomials and has a good performance for a class of
stream cypher generated by linear feedback shift registers. The ZDD data structure is also
used in PolyBoRi [1] and Chai et al.’s characteristic set algorithm [3, 5].

In this talk, a new algorithm for computing branch Gröbner systems is presented. Some
new techniques for manipulating boolean polynomials are used to build Gröbner bases for all
branches. ZDD is again used as the basic data structure to store boolean polynomials. The
implementation of this new algorithm in C performs very well for many examples. The ideas
used in this new algorithm can also be extended to compute branch Gröbner systems in a
more general form, which will be studied in our future work.

Let B := F2[x1, . . . , xn]/〈x21 − x1, . . . , x
2
n − xn〉 be a boolean polynomial ring over the

binary field F2 = {0, 1} with n variables {x1, . . . , xn}. Let F be a set of boolean polynomials
in B, an ideal generated by F over B is defined as 〈F 〉 = {p1f1 + · · · + pmfm | p1, . . . , pm ∈
B, f1, . . . , fm ∈ F}.

Let ≺ be an order on B deduced from a monomial order in F2[x1, . . . , xn], and F be a set
of boolean polynomials in B. A set G ⊂ 〈F 〉 is called a Gröbner basis of 〈F 〉, if for any
f ∈ 〈F 〉, there exists g ∈ G such that lm(g) divides lm(f).

In this talk, we will consider a variant of Gröbner bases.

Definition 1 (Branch Gröbner system) Let ≺ be an order on B deduced from a mono-
mial order in F2[x1, . . . , xn], and F be a set of boolean polynomials in B. A finite set
G = {G1, · · · , Gl} is called a branch Gröbner system of the ideal 〈F 〉, if

1. Gi is a Gröbner basis for the ideal 〈Gi〉 ⊂ B, and

2. V (F ) = V (G1) ∪ · · · ∪ V (Gl),

where V (F ) = {α ∈ Fn
2 | f(α) = 0,∀f ∈ F )} and similarly for V (Gi). Particularly, each Gi

is called a branch of this branch Gröbner system G.

Please note that a general Gröbner basis of 〈F 〉 directly constructs a branch Gröbner
system. A branch Gröbner system will be easier to be computed than a general Gröbner
basis, because in each branch the corresponding system is simpler. In current talk, instead of
computing a branch Gröbner system in its general form, we present an efficient algorithm for
computing a special branch Gröbner system defined below.

Definition 2 (Linear branch Gröbner system) A branch Gröbner system G = {G1, · · · , Gl}
is called a linear branch Gröbner system of the ideal 〈F 〉, if for any g ∈ Gi, we have
lm(g) ∈ {x1, . . . , xn} where i = 1, . . . , l, i.e. each polynomial appearing in this branch Gröbner
system has a linear leading monomial.
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Linear branch Gröbner systems are similar to the characteristic sets discussed in [3, 5].
But the algorithm presented in this paper can be extended to compute other branch Gröbner
systems with a small adaption.

Clearly, a linear branch Gröbner system is sufficient to find all points in V (F ) directly.
The new algorithm has been implemented in C based on the CUDD package [7]. Our

implementation is tested by the famous Bivium stream cipher after guessing several bits.
Examples are from [6], and the input of examples all include 176 variables and 160 polynomials.
The timing below is obtained from a PC (Core i7-2600, 4GB memory) running Windows 7
(64 bit).

Table 1: Timings (sec.)
Bits guessed Average Time Max Time Min Time

37 0.186 0.359 0.078
36 0.401 0.609 0.265
35 0.655 0.874 0.453
34 3.584 9.391 1.342

In the above table, the first column shows how many bits/variables are guessed in the
Bivium system. Average Time is obtained from 10 times of arbitrary guesses. Max Time and
Min Time give the largest and smallest time during these tests. The data in this table shows
this new algorithm is efficient and guessing 35 variables leads to the best attack of Bivium
system which is consistent with existing results.

Keywords
Gröbner basis, branch Gröbner system, boolean polynomial, algorithm, algebraic cryptanalysis.
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Abstract

The paper is dedicated to ideas of homomorphic encryption and multivariate key dependent
cryptography. We observe recent theoretical results on the above-mentioned topics together
with their applications to cloud security. Post Quantum Cryptography could not use many
security tools based on Number Theory, because of the factorization algorithm developed by
Peter Shor. This fact and fast development of Computer Algebra make multivariate cryp-
tography an important direction of research. The idea of key dependent cryptography looks
promising for applications in Clouds, because the size of the key allows to control the speed
of execution and security level. Finally, special classes of finite rings turned out to be very
useful in homomorphic encryption and for the development of multivariate key.

Cloud computing provides clients with a virtual computing infrastructure on top of which
they can store data and run applications. While the benefits of cloud computing are clear,
it introduces new security challenges since cloud operators are expected to manipulate client
data without necessarily being fully trusted. We are designing cryptographic primitives and
protocols tailored to the setting of cloud computing, attempting to strike a balance between
security, efficiency and functionality. The current generation of cloud storage services do not
provide any security against untrusted cloud operators making them unsuitable for storing
sensitive information such as medical records, financial records or high impact business data.
To address this we are pursuing various research projects that range from theory to practice.

Homomorphic encryption. The most common use of encryption is to provide confi-
dentiality by hiding all useful information about the plaintext. Encryption, however, renders
data useless in the sense that one loses the ability to operate on it. To address this we are
designing cryptosystems that support a variety of computations on encrypted data, ranging
from general-purpose computations (i.e., fully-homomorphic encryption) to special-purpose
computations (e.g., voting and search).

Searchable structured encryption. A searchable encryption scheme encrypts data in
such a way that a token can be generated to allow a third party to search over the encrypted
data. Using a searchable encryption scheme, a client can safely store its data with an untrusted
cloud provider without losing the ability to search over it. There is a need of structured
encryption which allows a client to encrypt various types of data (e.g., social networks or
web graphs) in such a way that complex queries can be performed over the encrypted data.
Structured encryption and various constructions for graph data is known.

Some security issues raised by cloud computing are motivated by virtualization. Dynamic
scalability or elasticity will help generalize high-performance computing and very large data
sets in applications. But the real gains in performance depend heavily on the predictability
of physical and virtualized resources. It means that the balancing of performance against
security and the adaptation of HPC or VLDB techniques to cloud computing are important
issues and will have long-lasting scientific content. The direction of Key Dependent Message
(KDM) secure encryption in Cryptography can bring an appropriate security tools for Cloud
Computing.

The goal of the presented paper is discussion of new KDM cryptosystems, which have some
potential to be used in the era of Postquantum Cryptography. The Quantum Computer is a
special random computational machine. Recall that computation in Turing machine can be
formalised with the concept of finite automaton as a walk in the graph with arrows labelled
by special symbols. ”Random computation” can be defined as a random walk in the random
graph. So we are looking for the deterministic approximation of random graphs by extremal
algebraic graphs. It is known that the explicit solutions for an optimization graphs have
properties similar to random graphs. The probability of having rather short cycle in the
walking process on random graph is zero. So the special direction of Extremal Graph Theory
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of studies of graphs of order v (the variable) without short cycles of maximal size (number of
edges) can lead to the discovery of good approximation for random graphs.

Keywords
multivariate cryptography, cloud computing, symbolic computations, graphs of large girth

1 Introduction

The plainspace of the algorithm is Kn, where K is the chosen commutative ring. Graph theoretical
encryption corresponds to walk on the bipartite graph with partition sets which are isomorphic to
Kn. We conjugate chosen graph based encryption map, which is a composition of several elemen-
tary polynomial automorphisms of a free module Kn with special invertible affine transformation
of Kn. Finally we compute symbolically the corresponding polynomial map g of Kn onto Kn.
We say that the sequence gn, n ≥ 3, n → ∞ of polynomial transformation bijective maps of free
module Kn over commutative ring K is a sequence of stable degree if the order of gn is growing
with n and the degree of each nonidentical polynomial map of kind gn

k is an independent constant
c. A transformation b = τgn

kτ−1, where τ is affine bijection, n is large and k is relatively small,
can be used as a base of group theoretical Diffie-Hellman key exchange algorithm for the Cremona
group C(Kn) of all regular automorphisms of Kn. The specific feature of this method is that the
order of the base may be unknown for the adversary because of the complexity of its computation.
The exchange can be implemented by tools of Computer Algebra (symbolic computations). The
adversary can not use the degree of righthandside in bx = d to evaluate unknown x in this form
for the discrete logarithm problem.

In the paper we introduce the explicit constructions of sequences of elements of stable degree c
for each commutative ring K containing at least 3 elements and each c ≥ 2. Special cases of c = 3
and c = 2 were obtained in [11] and [10]. We discuss the implementation of related key exchange
and public key algorithms. It is interesting that in the case of c ≥ 4 use of special affine bijections
lead to sparse polynomial transformation with O(n3) monomial expressions. Those results are
based on the construction of the family D(n, q) of graphs with large girth and the description of
their connected components CD(n, q). The existence of infinite families of graphs of large girth had
been proven by Paul Erdös’ (see [1]). Together with famous Ramanujan graphs introduced by G.
Margulis [4] and investigated in [3] graphs CD(n, q) is one of the first explicit constructions of such
a families with unbounded degree. Graphs D(n, q) had been used for the construction of LDPS
codes and turbocodes which were used in real satellite communications ([2]), for the development
of private key encryption algorithms ([9], [5]), the option to use them for public key cryptography
was considered in [8], [7] and in [6], where the related dynamical system had been introduced.

2 Preliminaries

Let K denote commutative ring.
Set Q of the ring K is the multiplicative set of ring K, if it is closed under operation of

multiplication (x, y ∈ Q⇒ x · y ∈ Q) and does not contain 0.
Elements t1, t2, . . . , tl, l ≥ 1 z K are called multiplicative generators, if there is a multi-

plicative set Q containing all ti, i = 1, 2, . . . , l.

2.1 Graphs and incidence system

The missing definitions of graph-theoretical concepts which appear in this paper can be found in
[1]. All graphs we consider are simple, i.e. undirected without loops and multiple edges. Let
V (G) and E(G) denote the set of vertices and the set of edges of G, respectively. Then |V (G)|
is called the order of G, and |E(G)| is called the size of G. A path in G is called simple if all
its vertices are distinct. When it is convenient, we shall identify G with the corresponding anti-
reflexive binary relation on V (G), i.e. E(G) is a subset of V (G) × V (G) and write vGu for the
adjacent vertices u and v (or neighbors). The sequence of distinct vertices v1, . . . , vt, such that
viGvi+1 for i = 1, . . . , t− 1 is the pass in the graph. The length of a pass is a number of its edges.
The distance dist(u, v) between two vertices is the length of the shortest pass between them. The
diameter of the graph is the maximal distance between two vertices u and v of the graph. Let Cm
denote the cycle of length m i.e. the sequence of distinct vertices v1, . . . , vm such that viGvi+1,
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i = 1, . . . ,m − 1 and vmGv1. The girth of a graph G, denoted by g = g(G), is the length of the
shortest cycle in G. The degree of vertex v is the number of its neighbors (see [15] or [1]).

The incidence structure is the set V with partition sets P (points) and L (lines) and symmetric
binary relation I such that the incidence of two elements implies that one of them is a point and
another is a line. We shall identify I with the simple graph of this incidence relation (bipartite
graph). If number of neighbours of each element is finite and depends only on its type (point or
line), then the incidence structure is a tactical configuration in the sense of Moore (see [12]). The
graph is k-regular if each of its vertex has degree k, where k is a constant. In this section we
reformulate results of [13], [14] where the q-regular tree was described in terms of equations over
finite field Fq.

Let q be a prime power, and let P and L be two countably infinite dimensional vector spaces
over Fq. Elements of P will be called points and those of L lines. To distinguish points from lines
we use parentheses and brackets: If x ∈ V , then (x) ∈ P and [x] ∈ L. It will also be advantageous
to adopt the notation for coordinates of points and lines introduced in [4]:

(p) = (p1, p11, p12, p21, p22, p
′
22, p23, . . . , pii, p

′
ii, pi,i+1, pi+1,i, . . .),

[l] = [l1, l11, l12, l21, l22, l
′
22, l23, . . . , lii, l

′
ii, li,i+1, li+1,i, . . .).

We now define an incidence structure (P,L, I) as follows. We say the point (p) is incident with
the line [l], and we write (p)I[l], if the following relations between their coordinates hold:

l11 − p11 = l1p1

l12 − p12 = l11p1

l21 − p21 = l1p11

lii − pii = l1pi−1,i (1)

l′ii − p′ii = li,i−1p1
li,i+1 − pi,i+1 = liip1

li+1,i − pi+1,i = l1p
′
ii

(The last four relations in (1) are defined for i ≥ 2.) This incidence structure (P,L, I) we denote
as D(q). We speak now of the incidence graph of (P,L, I), which has the vertex set P ∪ L and
edge set consisting of all pairs {(p), [l]} for which (p)I[l].

2.2 Connected components

Let us consider the description of connected components of the graphs.
Let n ≥ 6, t = b(n+ 2)/4c, and let u = (u1, u11, · · · , utt, u′tt, ut,t+1, ut+1,t, · · · ) be a vertex of

D(n,K). (It does not matter whether u is a point or a line). For every r, 2 ≤ r ≤ t, let

ar = ar(u) =

r∑

i=0

(uiiu
′
r−i,r−i − ui,i+1ur−i,r−i−1) (2)

,
and a = a(u) = (a2, a3, · · · , at). (Here we define
p−1,0 = l0,−1 = p1,0 = l0,1 = 0, p00 = l00 = −1, p0,1 = p1, l1,0 = l1, p′00 = l′00 = 1 l′11 = l11,

p′1,1 = p1,1).
In [13] the following statement was proved.

Proposition 1 Let u and v be vertices from the same component of D(k, q). Then a(u) = a(v).
Moreover, for any t−1 field elements xi ∈ Fq, 2 ≤ t ≤ [(k+2)/4], there exists a vertex v of D(k, q)
for which

a(v) = (x2, . . . , xt) = (x).

Corollary 1 Let us consider a general vertex

x = (x1, x1,1, x2,1, x1,2 · · · , xi,i, x
′
i,i, xi+1,i, xi,i+1, · · · ),

i = 2, 3, · · · of the connected component CD(n,K), which contains a chosen vertex v. Then,
coordinates xi,i, xi,i+1, xi+1,i can be chosen independently as “free parameters” from K and x′i,i
could be computed successively as the unique solution of the equations ai(x) = ai(v), i = 2, 3, . . . .
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3 Operators LD,n,βk and PD,n,αk

Let LD,n,βk
be the operator of taking the neighbour of point:

(p)2k−2 = (p0,1, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, . . . , pi,i, p

′
i,i, pi,i+1, pi+1,i, . . .),

of a kind
[l]2k−1 = [βk, l1,1, l1,2, l2,1, l2,2, l

′
2,2, l2,3, . . . , li,i, l

′
i,i, li,i+1, li+1,i, . . .],

where parameters l1,1, l1,2, l1,2, l2,2, . . . , li,i, li,i+1, li+1,i, . . . are computed consequently from the
equations (1) in definition of D(n,K) and all l′i,i for i = 2, 3, . . . are computed using equation
describing connected component (2).

Similarly, PD,n,αk
is the operator of taking the neighbour of line

[l]2k−1 = [l1,0, l1,1, l1,2, l2,1, l2,2, . . . , li,i, li,i+1, l
′
i,i, li+1,i, . . .],

of a kind
(p)2k = (p2k−20,1 + αk, p1,1, p1,2, p2,1, p2,2, . . . , pi,i, p

′
i,i, pi,i+1, pi+1,i, . . .),

where parameters p1,1, p1,2, p2,1, p2,2,. . ., pi,i, pi,i+1, pi+1,i, . . . are computed consequently from
the equations (1) in definition of D(n,K) and all p′i,i for i = 2, 3, . . . are computed using equation
describing connected component (2).

Given the vector (p)0 = (p0,1, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, . . . , pi,i, p

′
i,i, pi,i+1, pi+1,i, . . .), (of

length n) let us take elements α = (α1, α2, . . . , αk) and β = (β1, β2, . . . , βk) from Qk and compo-
sition Fn,α,β = LD,n,β1PD,n,α1LD,n,β2PD,n,α2 . . . LD,n,βk

PD,n,αk
.

Theorem 1 (A. Wroblewska) Independently from the choice of α = (α1, α2, . . . , αk) ∈ Qk and

β = (β1, β2, . . . , βk) ∈ Qk, the map Fn,α,β of free module Kn−bn+2
4 c is bijective map with degree⌊

n+2
4

⌋
.

Theorem 2 (V. Ustimenko) The order Fn,α,β is going to ∞ when n→∞

4 Application

4.1 Public key algorithm

Let τ be linear transformation τ : x → Ax, where A is sparse matrix with condition detA 6= 0
Map τFn,α,βτ

−1 written as a multivariate public rule:

x1 → h1(x1, x2, . . . , xn)

x2 → h2(x1, x2, . . . , xn)

. . .

xn → hn(x1, x2, . . . , xn),

can be used in public key cryptography. Alice - the holder of the key - keeps linear transformation
and (β1, α1, β2, α2, . . . , βk, αk) secret. Bob (public user) has the above map.

Combining the transformation Fn,α,β with two linear transformation, Bob get a formula:

y = (h1(x1, . . . , xn), . . . , hn(x1, . . . , xn)),

where hi(x1, . . . , xn) are polynomials of n variables of degree
⌊
n+2
4

⌋
. Hence the process of straight-

forward encryption can be done in polynomial time O(n6). But the cryptanalyst Catherine, having
a only a formula for y, has very hard task to solve the system of n equations in n variables of degree⌊
n+2
4

⌋
. So the general algorithm for finding the solution of system of polynomials equations has

exponential time (λn)O(n).
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4.2 Diffie-Hellman key exchange protocol

We consider Diffie-Hellman algorithm for C(Kn) for the key exchange in the case of group.
Let AGLn(Fq) be the group of affine transformation of the vector space Fnq , i.e. maps τA,b :
x̃ → x̃A + b, where x̃ = (x1, x2, . . . , xn), b = (b1, b2, . . . , bn) and A is invertible sparse matrix
with detA 6= 0. Let hkn be the new public rule obtained via k iterations of hn = Fn,α,β =
LD,n,β1

PD,n,α1
LD,n,β2

PD,n,α2
. . . LD,n,βk

PD,n,αk
. Correspondents Alice and Bob have different in-

formation for making computation. Alice chooses dimension n, element hn as above, affine trans-
formation τ ∈ AGLn(K). So she obtains the base b = τhknτ

−1 and sends it in the form of standard
polynomial map to Bob.

So Alice chooses rather large number nA computes cA = bnA and sends it to Bob. On his turn
Bob chooses his own key nB and computes cB = bnB . He and Alice get the collision map c as cA

nB

and cB
nA respectively.

Notice that the position of adversary is similar to Bob’s position. He (or she) need to solve one
of the equations bx = cB or bx = cA. The algorithm is implemented in the cases of finite fields and
rings Zm for family of groups C(Kn).
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Abstract

In Pattern Recognition, there is a vast literature concerning the question how to detect
whether two curves are similar. Essentially, the problem is to recognize a certain curve as the
result of applying a movement to another curve in a database. Most of the strategies proposed
so far deal with curves in implicit form, and ultimately resort to numerics to decide whether
such curves are related by a similarity.

In this talk, we present a new, fast, and deterministic algorithm to address the problem
in the case when the curves are defined by a rational parametrization in exact arithmetic.
The algorithm does not require to compute or use implicit equations of the curves, and takes
advantage of the fact that the curves are similar if and only if their parametrizations are
related by means of a Möbius transformation. It has been implemented and tested in the Sage

computer algebra system, and shows good performance for middle inputs.

Keywords
Pattern Recognition, Planar Rational Curves, Möbius transformation
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Abstract

Considerable attention has been given to the computation of geometric loci in dynamic
geometry, from both graphical and equational viewpoints. Recent work has established a
rigourous approach to the last issue, solving the subject for the algebraic realm. Nevertheless,
although the automatic computation of envelopes could be seen as an analogous problem,
there are cases where unexpected difficulties emerge.

In this talk we review the state of the art of common dynamic geometry software when
dealing with envelopes. Despite their maturity in other subjects, envelopes are generally
considered as purely graphic objects in such environments, without any analytic knowledge
about them.

We also describe a data structure needed to cope with envelopes in dynamic geometry, and
a Sage program able to compute usual envelopes in an efficient way. Finally, in order to show
the complexities of such computations, we discuss the envelope of a simple family of ellipses.
The search for such envelope will illustrate two facts:

1. There is no general agreement between dynamic geometry developers about the definition
of envelope, and

2. Currently, the simple application of computer algebra techniques is not enough to auto-
matically solve the problem.

Keywords
Dynamic Geometry, Automated Deduction in Geometry, Envelope Computation

1 Introduction

Given a family of curves Cα : F (x, y, α) = 0, its envelope or discriminant is defined [1] as the set

D = {(x, y) ∈ R2 : there exists α ∈ R with F (x, y, α) =
∂F

∂α
= 0}.

Other definitions coexist with this one, for instance

• The envelope E1 is the limit of intersections of nearby curves Cα.

• The envelope E2 is a curve tangent to the Cα.

• The envelope E3 is the boundary of the region filled by the curves Cα.

where it can be proved that Ei ⊂ D, i = 1, . . . , 3. While E1 seems to be the interpretation of
envelopes given by Lagrange to singular solutions of differential equations (see [2]), E3 and, to a
lesser extent, E2 are behind the intuitive notion of envelope used in dynamic geometry environ-
ments. Since these systems are mostly based on a graphical simulation of geometry, their ability
to trace geometrc elements is succesfully used to suggest envelopes. Consider, for instance, the
family of ellipses with foci in A(4, 0), B(0, α) (a semifree point on the y axis) and major axis with
length 5.

If a user activates the trace option for the variable ellipse and moves the point B along its path,
a plane region is drawn (Figure 1), the border being the sought envelope, if the third alternative
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Figure 1: A family of ellipses obtained as loci (left: Cinderella, right: GeoGebra) is traced to
suggest its envelope.

definition is used. Nevertheless, as usual in dynamic geometry, the user gets a cursory knowledge:
no result about the type of curves defining the border is returned. Even worse, consider a region
with holes, or without border. In this last case, the strategy of tracing the family curves could
mislead an inexperienced user, as exemplified by searching for the envelope of straight lines passing
through the origin.

It should be noted that although there exist a well known dynamic geometry software, Cabri,
able to compute equations for constructed objects, its numerical approach is not robust and does
not return any result for the above family.

2 A parametric approach for the envelope problem

Several authors (see, for instance, [3, 4]) have proposed extending the data structure of dynamic
geometry systems to include what can be called a parametric description of constructions. This
description involves keeping the relation between primitive and dependent objects in such a way
that any assignment of the free variables (i.e., coordinates of basic points and equations of other
initial objects) would trigger the actual computation of dependent objects.

Using the Sage library in [5], a generic ellipse of the family could be defined by

FreePoint(’A’,4,0)

FreePoint(’P1’,0,0)

FreePoint(’P2’,0,1)

Line(’y’,’P1’,’P2’)

PointOnObject(’B’,’y’)

FreePoint(’M’,2,2)

FreePoint(’N’,2,7)

Line(’MN’,’M’,’N’)

PointOnObject(’P’,’MN’)

Circle(’c1’,’A’,’M’,’P’)

Circle(’c2’,’B’,’N’,’P’)

IntersectionObjectObject(’X’,’c1’,’c2’)

Locus2(’loc’,’X’,’B’,’P’)

where the Locus2 function contains a parametric representation of the ellipse. That is, its algebraic
description is not a function in two variables, but it also contains the parameter of the variable
point B. The polynomial of the family is

4y2α2 − 4yα3 − 36x2 − 100y2 + α4 − 32xyα + 16xα2 + 164yα − 82α2 + 144x + 81,

and one could then use the first definition of envelope to find its equation. The elimination of α
returns

x2y4 +y6 −16x3y2 −24xy4 −36x4 +74x2y2 −2y4 +432x3 +32xy2 −1647x2 −207y2 +1656x+1296,

and, after factoring,
(y2 − 18x − 9)(y2 + 2x − 9)(x2 + y2 − 8x + 16).

Thus, the border of the family of elipses consists of (part) of the above parabolas. Nevertheless,...
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3 Things are not so simple

There is a third factor in the expression of the discriminant that is not part of the border. In fact,
this factor is the focus A! While understanding why this point appears as part of the discriminant
has not been a trivial task (as will be illustrated in the talk), we note that asking, for instance,
Wolfram|Alpha, should give a hint about what is happening (Figure 2).

Figure 2: Wolfram|Alpha suggests that point A(4, 0) comes from complex components of the
envelope.

The moral of this short note is the need of a most rigorous approach when applying algebraic
methods valid in C to misunderstood situations. Here, the family of ellipses is semialgebraic. Thus,
automated approaches relying on complex approaches should used with caution!

Acknowledgement

The authors have been partially supported by the Spanish “Ministerio de Economı́a y Competitivi-
dad” and the “European Regional Development Fund” (FEDER), under the project MTM2011–
25816–C02–02.

References

[1] J.W. Bruce, P.J. Giblin, Curves and Singularities. Cambridge: Cambridge University Press,
1984.

[2] R.C. Yates, A Handbook on Curves and Their Properties. Ann Arbor, MI: J. W. Edwards,
1952.

[3] F. Botana, On the Parametric Representation of Dynamic Geometry Constructions, in B.
Murgante et al. (Eds.), Computational Science and Its Applications – ICCSA 2011, Springer
LNCS 6785, pp. 342–352, 2011.

166
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Abstract

In this paper, we analyze the relation between Leibniz algebras and combinatorial struc-
tures. More concretely, we study the properties to be satisfied by (pseudo)digraphs so that
they are associated with low-dimensional Leibniz algebras. We present some results related to
this association and show an algorithmic method to obtain them, which has been implemented
with Maple.

Keywords
Pseudodigraph, Combinatorial structure, Leibniz algebra, Structure Theory, Algorithm

1 Introduction

Leibniz algebras were introduced at the beginning of the 1990s by J.-L. Loday [3]. They are
a particular case of non-associative algebras and provide a non-commutative generalization of
Lie algebras. There exists extensive research on these algebras due to their many applications in
Engineering, Physics and Applied Mathematics. However, some aspects of Leibniz algebras remain
unknown. In fact, the classification of nilpotent and solvable algebras is still an open problem.

Graph Theory is also very important and useful due to its many uses as a tool for other subjects.
Our main goal is to extend the study and analysis of the relations between Graph Theory and Lie
algebras proposed in [1, 2], but this time to the case of Leibniz algebras.

2 Preliminaries

We show some preliminary concepts on Leibniz algebras, bearing in mind that the reader can
consult [3] as an introductory paper.

Definition 1 A Leibniz algebra L over a field K is a vector space with a second inner bilinear
composition law [·, ·], which verifies the so-called Leibniz identity

[[X,Y ], Z] − [[X, Z], Y ] − [X, [Y, Z]] = 0, ∀ X, Y, Z ∈ L
¿From now on, we will denote L(X, Y, Z) = [[X, Y ], Z] − [[X, Z], Y ] − [X, [Y, Z]].

If, in addition, is verified that [X, X] = 0, for all X ∈ L, the Leibniz algebra is also a Lie
algebra. In this case, it is satisfied that [X,Y ] = −[Y, X] and the Leibniz identity is equivalent to
the Jacobi identity.

Definition 2 Given a basis {ei}n
i=1 of an n-dimensional Leibniz algebra L, its structure constants

are defined by [ei, ej ] =
∑n

h=1 ch
i,jeh, for 1 ≤ i, j ≤ n.

Definition 3 The derived and central series of a finite-dimensional Leibniz algebra L are

L1 = L, L2 = [L, L], . . . , Lk = [Lk−1, Lk−1], . . . and L1 = L, L2 = [L, L], . . . , Lk = [Lk−1, L], . . .

So, L is called (m − 1)-step solvable (resp. nilpotent) if there exists m ∈ N such that Lm = {0}
and Lm−1 ̸= {0} (resp. Lm = {0} and Lm−1 ̸= {0}).
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3 Associating combinatorial structures with Leibniz alge-
bras

Let L be a n-dimensional Leibniz algebra with basis B = {ei}n
i=1. Its structure constants correspond

to [ei, ej ] =
∑n

h=1 ch
i,jeh and, hence, the pair (L, B) is associated with a combinatorial structure

by the following procedure

a) For each ei ∈ B, we draw a vertex i.

b) For every vertex i verifying [ei, ei] ̸= 0, we draw a loop such that its weight is an n-tuple
given by (c1

i,i, c
2
i,i, . . . , c

n
i,i).

c) Given two vertices i, j verifying (cj
i,j , c

j
j,i) ̸= (0, 0), we draw a directed edge from vertex i to

j whose weight is given by the pair (cj
i,j , c

j
j,i).

d) Given three vertices i < j < k such that (ck
i,j , c

k
j,i, c

i
j,k, ci

k,j , c
j
i,k, cj

k,i) ̸= (0, 0, 0, 0, 0, 0), we

draw a full triangle ijk such that the edges ij, jk and ik have weights (ck
i,j , c

k
j,i), (ci

j,k, ci
k,j)

and (cj
i,k, cj

k,i), respectively. Moreover,

d1) we use a discontinuous line (named ghost edge) for edges with weight (0, 0).

d2) If two triangles ijk and ijl satisfy (ck
i,j , c

k
j,i) = (cl

i,j , c
l
j,i), draw only one edge between

vertices i and j shared by both triangles.

Figure 1: Loop, directed edge, full triangle and two triangles sharing an edge.

4 Leibniz algebras and (pseudo)digraphs

In this section, we study the structure of digraphs associated with low-dimensional Leibniz algebras.
For each case, we will study the type of Leibniz algebra according to the solvability of this algebra.
To be associated with a (pseudo)digraph G, a given Leibniz algebra L with basis B = {ei}n

i=1 has
the following law

[ei, ej ] = ci
i,jei + cj

i,jej , 1 ≤ i ̸= j ≤ n; [ek, ek] =
n∑

h=1

ch
k,keh (1)

since these brackets avoid the appearance of full triangles in G.

Proposition 1 Every digraph admitting some configuration of [1, Fig. 9] as a subdigraph is not
associated with any Leibniz algebra.

Proposition 2 The abelian Leibinz algebra is the only one of dimension 1, associated with a
digraph.

Proposition 3 Let L be a 2-dimensional Leibniz algebra associated with a connected pseudodigraph
G. Then, the configuration d) shown in Figure 2 is forbidden in G. In fact, G must present one
of the remaining configurations in that figure. Moreover, it is verified that

• Configurations a) and c) are associated with 2-step solvable non-nilpotent Leibniz algebras.
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Figure 2: Pseudodigraphs with two vertices and associated with Leibniz algebras.

• Configuration b) is always associated with 2-step solvable non-nilpotent Lie algebras (i.e. only
commutative Leibniz algebras).

• Configurations e) and f) are associated with a 2-step nilpotent Leibniz algebras.

Example 1 Let L be the Leibniz algebra with brackets [e2, e1] = e2 associated with Configuration
a). In this case, L2 = L2 = ⟨e2⟩, whereas Li = L2 and Li = 0 , for all i ≥ 3. Therefore, L is
2-step solvable, non-nilpotent.

Example 2 We consider the Leibniz algebra L with law [e1, e1] = −e1 − e2, [e1, e2] = e1 + e2

associated with Configuration e). In this case, L2 = L2 = ⟨e1 + e2⟩ and L3 = L3 = 0. Hence, L is
2-step nilpotent.

Example 3 Let L be the Leibniz algebra with brackets [e1, e1] = [e2, e2] = −e1 − e2, [e1, e2] =
[e2, e1] = e1+e2, associated with Configuration f). For this algebra, L2 = ⟨e1+e2⟩, L3 = L3 = {0}.
So, L is 2-step nilpotent.

Proposition 4 Let L be a 3-dimensional Leibniz algebra associated with a connected pseudograph
G including some loop. Then, G must present one of the configurations in Figure 3 up to permu-
tation of labels. Any other pseudodigraph is forbidden in G.

Figure 3: Pseudodigraphs with three vertices, associated with Leibniz algebras, not being Lie
algebras.

Proposition 5 Let G be a pseudodigraph formed by the first configuration of [1, Fig. 15] with
loops. Then G is associated with a solvable non-nilpotent Leibniz algebra.

Proposition 6 Let G be a pseudodigraph formed by the second configuration of [1, Fig. 15] with
loops. Then, G is associated with a Leibniz algebra if and only if G has a loop on each vertex
incident with a double edge.

5 Implementation and complexityfor the Leibniz identity

Now, we show the algorithmic method that we have used in the previous section to evaluate the
Leibniz identity in order to find out the allowed and forbidden configurations and the restrictions
over the weights of the edges. Regarding this, we have implemented our algorithm using the
symbolic computation package MAPLE, working the implementation in version 12 or higher. To
do this, we will use the libraries linalg, combinat, GraphTheory and Maplets[Elements] to
activate commands related to Linear and Combinatorial Algebra, Graph Theory and the last one
to display a message so that the user introduces the required input in the first subprocedure. So,
we start considering a vector space L with basis B and the type of brackets expressed in (1) and
give the following steps:
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1. Computing the bracket product between two arbitrary basis vectors in B.

This first subprocedure is called law and computes the bracket between two arbitrary basis
vectors in B. It receives the subindexes of two basis vectors in B. A conditional sentence is
introduced to determine each non-zero bracket. The user has to complete the implementation
depending on the law of L, so we have added a sentence at the beginning of the implementa-
tion, reminding of this fact. Before running any other sentence, we restart all the variables
by using the command restart. Moreover, we save the value of variable dim (the dimension)
with the command assign.

> maplet:=Maplet(AlertDialog("Don’t forget to introduce non-zero brackets and the dimension in

subprocedure law",’onapprove’=Shutdown("Continue"),’oncancel’=Shutdown("Aborted"))):

> Maplets[Display](maplet):

> assign(dim,...):

> law:=proc(i,j)

> if (i,j)=... then ...;

> elif ....

> else 0; end if;

> end proc;

2. Evaluating the bracket between two vectors expressed as a linear combination of vectors from
basis B.

We implement the subprocedure called bracket to compute the product between two ar-
bitrary vectors of L, which are expressed as linear combinations of the vectors in B. The
subprocedure law is called in the implementation.

> bracket:=proc(u,v,n)

> local exp; exp:=0;

> for i from 1 to n do

> for j from 1 to n do

> exp:=exp + coeff(u,e[i])*coeff(v,e[j])*law(i,j);

> end do;

> end do;

> exp;

> end proc:

3. Imposing the Leibniz identity and solving the corresponding system of equations.

Next, we show the implementation of the main procedure called Leibniz, which checks if the
vector space L is or not a Leibniz algebra. This procedure receives as input the dimension
n of the vector space L and returns the solution of a system of equations obtained from
imposing the Leibniz identity in L. If the system has no solution, then we can conclude that
the vector space L is not a Leibniz algebra. Otherwise, we will obtain the conditions over
the structure constants ck

i,j so that L is a Leibniz algebra.

> Leibniz:=proc(n)

> local L,M,N,P;

> L:=[];M:=[];N:=[];P:=[];

> for i from 1 to n do

> L:=[op(L),i,i,i];

> end do;

> M:=permute(L,3);

> for j from 1 to nops(M) do

> eq[j]:=bracket(bracket(e[M[j][1]],e[M[j][2]],n),e[M[j][3]],n)-

> bracket(bracket(e[M[j][1]],e[M[j][3]],n),e[M[j][2]],n)-

> bracket(e[M[j][1]],bracket(e[M[j][2]],e[M[j][3]],n),n);

> end do;

> N:=[seq(eq[k], k=1..nops(M))];

> for k from 1 to nops(N) do

> for h from 1 to n do

> P:=[op(P),coeff(N[k],e[h])=0];

> end do;

> end do;

> solve(P);

> end proc:
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Example 4 Now, we show an example with the configuration i) from Figure 3. We consider the
3-dimensional vector space L with brackets

[e1, e1] =
3∑

i=1

ci
1,1ei; [ej , e2] = cj

j,2ej , [e2, ej ] = cj
2,jej , for j = 1, 3

First, we have to complete the implementation of the subprocedure law as follows

> maplet:=Maplet(AlertDialog("Don’t forget to introduce non-zero brackets and the dimension in

subprocedure law",’onapprove’=Shutdown("Continue"),’oncancel’=Shutdown("Aborted"))):

> Maplets[Display](maplet):

> assign(dim,3):

> law:=proc(i,j)

> if (i,j)=(1,1) then c111*e[1]+c112*e[2]+c113*e[3];

> elif (i,j)=(1,2) then c121*e[1];

> elif (i,j)=(2,1) then c211*e[1];

> elif (i,j)=(2,3) then c233*e[3];

> elif (i,j)=(3,2) then c323*e[3];

> else 0;

> end if;

> end proc:

After that, we must run the subprocedure bracket and the procedure Leibniz. Now, we evaluate
this main procedure over the variable dim

> Leibniz(dim);

> {c111=0,c112=0,c113=c113,c121=-c211,c211=c211,c233=0,c323=-2*c211}

So, we obtain those restrictions for the weights of the edges in configuration i) from Figure 3.

Next, we compute the complexity of the algorithm. To do so, we consider the number of
operations carried out in the worst case. We use the big O notation to express the complexity. To
recall the big O notation, the reader can consult [4]: given two functions f, g : R → R, we could say
that f(x) = O(g(x)) if and only if there exist M ∈ R+ and x0 ∈ R such that |f(x)| < M · |g(x)|,
for all x > x0.

We denote by Ni(n) the number of operations when considering the step i. This function
depends on the dimension n of the Lie algebra. Table 1 shows the number of computations and
the complexity of each step, as well as indicating the name of the procedure corresponding to each
step.

Table 1: Complexity and number of operations.

Step Procedure Complexity Operations

1 law O(n2) N1(n) = O
(

n(n−1)
2

)

2 bracket O(n4) N2(n) =

n∑

i=1

n∑

j=1

N1(n)

3 Leibniz O(n7) N3(n) = O(n) + O(n3) +
n3∑

i=1

N2(n) +
n3∑

j=1

n∑

k=1

1
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Abstract

Historically, the minimal length Hamiltonian cycles in a random point cloud lying inside a
given rectangle are computed by partitioning this rectangle. We have used successive convex
hulls of the set of points, in order to obtain partitions better suited for this purpose. The free
computer algebra system Sage has been very useful to perform the corresponding computa-
tions (for sets of 100 to 200 points, the result is obtained in just 15 seconds using a laptop
computer running Ubuntu 12.04 with an Intel Core i7-2630QM processor and 8GB of RAM).

The code developed is also applied with success to obtain good approximations of minimal
length Hamiltonian cycles, across the major cities of the countries of the European Union. In
each country, Ei, we make a transverse Mercator representation centered in the point Ci of
average latitude and average longitude among the selected cities in the country. For a list of
countries [E1, · · · , En] we paste in the origin of the complex plane the local chart of E1. Then,
the local chart of E2 is translated by the complex number whose modulus is the geodesic
distance (C1, C2) and whose argument is the angle between the maximal circle (C1, C2) and
the parallel of C1, and so successively until En. In this way, all the cities are transformed into
a set of points in the complex plane where each pair can be connected by a straight line.

Keywords

Hamiltonian Cycle, Convex Hull, Jarvis algorithm modified, Sage, Geographic Coordinates,
Geodesic Displacement
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1 Introduction

The search of minimal length paths which pass just once through each one of the points of a finite
subset of the complex plane, L, is a classical problem not yet solved in a reasonable computation
time, when the cardinal |L| is big.
If R is a bounded rectangle containing L, good approximations to the optimal solution have been
achieved using rectangular partitions {Ri | i ∈ I} of R which induce partitions {Li | i ∈ I} in L so
that Li = L ∩ Ri and |Li| < k ∀i ∈ I with k a small natural number. In these subsets Li you
can easily find minimal length hamiltonian paths and the standard computations are guided by
different strategies to adequately connect the optimal paths for each Li and generate the desired
optimal hamiltonian cycle in all L [1].

In this communication we present a non-standard attempt of construction of the optimal hamilto-
nian cycle in any finite set L of the complex plane, based on the following ideas:

1. If co(L) is the convex envelope of L, ∂(co(L)) is its border and L ⊂ ∂(co(L)) we should just
choose an orientation in that border and, according to it, order the points of L. In this way
we construct a closed hamiltonian path in L which will be of minimal length because it is
the only one without crossing of edges.

2. If there exists a z0 ∈ L such that L′ = L \ {z0} has the property expressed in 1, we can
construct an optimal hamiltonian path in L′ and replace the most suitable edge (zi, zi+1)
by the polygonal path (zi, z0, zi+1) so that the new path, which obviously would still be
hamiltonian, enlarged its length as little as possible.

3. If there existed a {z0, · · · , zn} ⊂ L such that L′ = L\{z0, · · · , zn} had the property expressed
in 1, we could consider the optimal hamiltonian path in L′ and study the order to incorporate
the zi to the path L′ to preserve the hamiltonian character and to enlarge its length as little
as possible.

In any L we can find the subset L1 = L∩∂(co(L)) which obviously has the property expressed in 1.
We add the elements of L\L1 following the heuristic in 3, in order to find the optimal hamiltonian
cycle of L1. The elements of L2 = L∩ ∂(co(L \L1)) are added in such a way that provide the best
Hamiltonian cycle in L12 = L1 ∪L2 . We add the elements of L3 = L ∩ ∂(co(L \ L12)) and, so on.
A Sage implementation of these ideas can be seen in [2].
In section 2 we describe some of these algorithms and discuss some examples of use in order to
highlight their good computing times in an average laptop. In section 3 we present a simulation
of optimal touristic or transport circuits through cities of the European Union so that the results
can be compared with those offered in Internet by known sources of geographical information.

2 Hamiltonian Cycles

The function listacomplejos(R,n) returns a random list of n complex numbers contained in the
central square of side 2R which will be our working set L. The function envolturaconvexa(L) re-
turns the set L1 = L ∩ ∂(co(L)) counterclockwise ordered and the function cebolla(L) returns the
list [L1, L2, · · · , Ln] expressing the desired partition of L.
The function pegalistas(L1, L2) returns the set L12 as an ordered list which tries to be the best
possible hamiltonian cycle in the two first layers. The order of incorporation of the points of L2 to
L1 is decided by the minimal length enlargement of the path. Ties are solved by the maximal incor-
poration angle and, if they persist, we use a recursive algorithm. Once decided the incorporation
of a certain w ∈ L2 between the points (zi, zi+1) of L1 one replaces the piece [zi−1, zi, w, zi+1, zi+2]
by their optimal reordering and procceds to incorporate a new element of L2.
The function cicloham(L) obtains the list [L1, L2, · · · , Ln], computes L12 pasting L2 to L1 , L123

pasting L3 to L12 and, by iteration, proposes as optimal hamiltonian cycle in L the list L1···n.
Our trust in this technique grew by its good work even in cases whose geometry did not suggest
it. For example, if E is the set
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Figure 1: The set E

the hamiltonian cycle Q = cicloham(E) is

Figure 2: The cicle Q found in set E

which, evidently, is the optimal one.
However, in spite of being cautious in the process of pasting, the list L1···n which always is a
hamiltonian cycle, can present some crossings of edges and, so, not be the minimal length one. For
example, if L is a set with |L| = 400 in a 40 m length sided square,

Figure 3: A set L of 400 cities
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C=cicloham(L) is a Hamiltonian cycle with a 654.54 m length which presents two crossings :

Figure 4: The cycle C found in L

However we can paste again the piece C[325 : 335] to the cycle C[: 325] + C[335 :] by means
of the formula MC=mejoratramo(C,325,335) and the piece MC[370 : 390] to the cycle MC[:
370] + MC[390 :] and obtain a cycle OC=mejoratramo(MC,370,390) without crossings of 648.92
m.

Figure 5: The cycle OC in L without crossings

Despite this technique does not assure finding the shortest hamiltonian path, its iteration gives a
fair approximation if a suitable collaboration man-machine is established. Although the quantifi-
cation of the goodness of this approximation is currently ongoing work, the heuristics makes us
sure that our technique can be used in games of the type [3] without the limitation |L| ≤ 50.

3 Hamiltonian trips

One of the more used applications of this type of problems is the design of touristic tours or routes
of transport across a certain set of cities. In our case, we have tried to get that the representation
of the cities in the complex plane can be realized simply from their latitude and longitude, to make
it easy to the user to incorporate cities or places of his interest to the set of the 518 cities of the
European Union considered by us.
In each country of the EU we have chosen one city per each million of inhabitants, and for that
reason we have left Cyprus and Malta out. In the country Ei, we make a transverse Mercator rep-
resentation centered in the point Ci of average latitude and average longitude among the selected
cities in the country. For a list of countries [E1, · · · , En] we paste in the origin of the complex
plane the local chart of E1. The local chart of E2 is then translated by the complex number whose
modulus is the geodesic distance (C1, C2) and whose argument is the angle between the maximal
circle (C1, C2) and the parallel of C1, and so successively until En. This is realized by the function
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viaje([E1, · · · , En]) which uses, as auxiliary function, the function desplazamiento(Ei, Ei+1).
The cartographical representation of the cities so obtained is also not standard and we have de-
signed it to make it easy to the user the incorporation of new groups of cities. We think that the
small distortions introduced by this representation should not affect the searched optimal hamil-
tonian cycle although eventually they can modify its real length.
For example, the best Hamiltonian cycle across the cities of Spain and Portugal which we obtain
with viaje([espanha,portugal]) and a iterated use of the function mejoratramo is

Figure 6: The cicle Spain and Portugal

0 [LISBOA, Setubal, Portimao,Tavira, Huelva, Cadiz, Sevilla, Cordoba, Jaen, Malaga]

10 [Granada, Almeria, Murcia, Alicante, Albacete,Cuenca, Teruel, V alencia, Castellon, Tarragona]

20 [Barcelona, Gerona, Lerida, Huesca, Zaragoza, Soria, Logronho, Pamplona, S.Sebastian, V itoria]

30 [Bilbao, Santander, Burgos, Palencia, V alladolid, Segovia, Guadalajara, MADRID,Toledo, Ciudad Real]

40 [Avila, Salamanca, Zamora, Bragansa, Leon, Oviedo, Lugo, Corunha, Orense, Pontevedra]

50 [V alensa, Braga, Porto,Aveiro, Coimbra, Caceres, Badajoz, Elvas, LISBOA]

with a 5502.95 km length and the cities sequenced by groups of ten, to easily localize them in
the graphic. Undoubtedly it seems to us more trustful the sequencing of the cycle than its length.
This would be a minor question because in our planning we have taken into account neither the
orography nor the road net. However, the number of cities seems to be enough to suppose that for
each edge of the cycle there exists a road of the net which connects the two cities at its endpoints.
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Abstract

In the current paper, we deal with the problem of designing rotating schedules from an
algebraic computational approach. Specifically, we determine a set of Boolean polynomials
whose zeros can be uniquely identified with the set of rotating schedules related to a given
workload matrix and with the different constraints which are usually imposed to them. These
polynomials constitute zero-dimensional radical ideals, whose reduced Gröbner bases can be
computed to determine explicitly the set of rotating schedules which satisfy each constraint
and hence, making possible to analyze their influence in the final pattern. Finally, we use this
polynomial method to classify and characterize the set of rotating schedules related to a given
number of shifts and work teams.

Keywords
Rotating schedule, Boolean ideal, Gröbner basis.

1 Introduction

Crew rostering is the last relevant step within the tactical phase of railway planning. Once the
distinct shifts are designed to cover all programmed services, it becomes necessary to proceed with
the individual assignment of the personal. The high complexity of this last task is mainly due to
the differences which exist among shifts (compare the most common: day, evening and night shifts)
from a quantitative as well as from a qualitative point of view. In addition, the individual acquired
rights of the personnel have to be taken into consideration. Shift works have special relevance in
those facilities which provide a service which is available at any time and day of the week. Due to
the mentioned significant differences among shifts, labor schedules in these jobs have to be carefully
designed. A scheduling pattern which is highly recommended for shift works is that of rotating
schedules, where the assignment of shifts per week to n distinct work teams is explicitly exposed
in a schedule of n rows and 7 columns. Specifically, the (i, j) entry of the schedule corresponds to
the shift or rest period which is initially assigned to the ith team, the jth day of the first week.
Once the week finishes, each team moves down to the following row of the schedule (or to the first
row in case of being the last team) to know the shift assignment of the new week.

In order to design a rotating schedule, it is necessary to know in advance its related workload
matrix, that is, the number of shifts of each type which have to be assigned each day of the week.
Besides, several constraints have to be taken into account to preserve equal opportunities among
workers and to prevent health risks like stress, sleep disorder or digestive upsets. In the current
paper, we consider the following six constraints exposed by Laporte [8, 9]:

C.1) Schedules should contain as many full weekends off as possible.

C.2) Weekends off should be well spaced out in the cycle.

C.3) A shift change can only occur after at least one day off.

C.4) The number of consecutive work days must not exceed 6 days and must not be less than 2.

C.5) The number of consecutive rest days must not exceed 6 days and must not be less than 2.

C.6) In consecutive days, forward rotations (day, evening, night) are generally preferred to back-
ward rotations (day, night, evening).
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There exist distinct methods and techniques in the literature to design rotating schedules [1]
like manual approach, integer programming, heuristic procedures or network flows. Since the main
goal of designing rotating schedules is minimizing costs and maximizing employee satisfaction,
these methods do not determine in general all the possible rotating schedules verifying certain
conditions, but only those which are on the path of finding the optimal model. However, it would
be interesting to analyze the influence of each kind of constraint on the set of feasible solutions,
that is, to deal with the number of rotating schedules which are eliminated or incorporated every
time that we add or remove a specific condition. As a possible alternative, the combinatorial
structure of any rotating schedule facilitates the use of the polynomial method established by Alon
[2] and Bernasconi et al. [4], which solves enumeration and counting problems in Combinatorics
by computing the reduced Gröbner basis of a zero-dimensional ideal uniquely related to a given
combinatorial object. In this regard, see, for instance, the surveys of De Loera et al. [10, 11] on
possible applications in graph theory. Indeed, graph theory has already been used in the scheduling
problem [7].

The current paper is organized as follows. In Section 2, we identify the rotating schedules of a
given workload matrix and satisfying Constraints C.1-C.6, with the set of zeros of a Boolean ideal,
which can be explicitly determined by computing the corresponding reduced Gröbner basis. Such
a computation has been implemented in a procedure in Singular [6], which is used in Section 3
to study the influence of Constraints C.3-C.6 in the design of rotating schedules related to part
time employers. Finally, since Gröbner bases are extremely sensitive to the number of variables,
we show in Section 4 how the previous method can be improved by considering column generation.

2 Boolean polynomials related to rotating schedules.

Given two positive integers s, t ∈ N, let W = (wij) be a s × 7 array with all column sums equal to
t and let RSW denote the set of rotating schedules of s shift works (including that corresponding
to rest days) and t team works, which have W as workload matrix. That is, wij indicates the
number of team works which have to have the ith shift the jth day. Thus, for instance, Constraint
C.1 implies that any rotating schedule of RSW should have fW = min{ws6, ws7} full weekends off.

Hereafter, [s] = {1, . . . , s} is assumed to represent the set of shift works of RSW in forward
rotation order (thus, for instance, 1, 2 and 3 can represent, respectively, day, evening and night
shifts), where the last symbol s corresponds to a rest day. In particular, the set RSW can be
identified with that of t × 7 arrays R = (rij) based on [s] such that the frequency vector of the
symbols which appear in each column of R is given by the corresponding column of W , that is,
given i ∈ [s] and j ∈ [7], the jth column of R contains wij times the symbol i.

In practice, it is also interesting to have the possibility of imposing some of the entries of
our future rotating schedule. Thus, for instance, according to Constraint C.2, the symbols s
corresponding to the fW full weekends off could be distributed by hand in advance, in a well-
spaced way in the cycle. Indeed, it is the usual way to proceed for designing rotating schedules [9].
In this regard, let E = (eij) be a t × 7 array with entries in the set [s] ∪ {0}, where eij ∈ [s] if the
entry (i, j) is imposed to our rotating schedule, or zero, otherwise. We say that R = (rij) ∈ RSW

contains E if rij = eij , for all i ∈ [t] and j ∈ [7]. Let RSW,E denote the subset of rotating schedules
of RSW containing E. The next result shows how this set can be identified with that of zeros
of a Boolean ideal which is zero-dimensional and radical. Its reduced Gröbner basis can be then
computed to determine explicitly the cardinality of RSW,E .

Theorem 1 The set RSW,E can be identified with that of zeros of the following zero-dimensional
ideal of Q[x111, . . . , xt7s].

IW,E = ⟨ 1 − xijeij : i ∈ [t], j ∈ [7], eij ∈ [s] ⟩ + ⟨xijk : i ∈ [t], j ∈ [7], eij ∈ [s], k ∈ [s] \ {eij} ⟩ +

⟨xijk · (1 − xijk) : i ∈ [t], j ∈ [7], k ∈ [s], eij = 0 ⟩ + ⟨ 1 −
∑

k∈[s]

xijk : i ∈ [t], j ∈ [7], eij = 0 ⟩+

⟨xijk : i ∈ [t], j ∈ [7], k ∈ [s], wkj = 0 ⟩ + ⟨ wkj −
∑

i∈[t]

xijk : j ∈ [7], k ∈ [s], wkj ̸= 0 ⟩.

Moreover, |RSW,E | = dimQ(Q[x111, . . . , xt7s]/IW,E).
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Proof. Any rotating schedule R = (rij) ∈ RSW,E can be uniquely identified with a zero
(x111, . . . , xt7s), where xijk = 1 if rij = k and 0, otherwise. The finiteness of RSW implies IW,E

to be zero-dimensional. Besides, since IW,E ∩ Q[xijk] = ⟨ xijk · (1 − xijk) ⟩ ⊆ IW,s,t for all i ∈ [t],
j ∈ [7] and k ∈ [s], Proposition 2.7 of [5] assures IW,E to be radical and thus, Theorem 2.10 of [5]
implies that |RW,E | = |V (IW,E)| = dimQ(Q[x111, ..., xt7s]/IW,E). �

Constraints C.3 to C.6 can be imposed to our rotating schedules if we translate them in terms
of Boolean polynomials of Q[x111, . . . , xt7s], which can be incorporated to the ideal IW,E .

C.3) For all k ∈ [s − 1] and l ∈ [s − 1] \ {k}, we add:





xijk · xi(j+1)l, for all i ∈ [t], j ∈ [6],

xi7k · x(i+1)1l, for all i ∈ [t − 1],

xt7k · x11l.

C.4) For a lower bound of 2 work days, we add, for each k ∈ [s − 1]:





(xijk − 1) · xi(j+1)k · (xi(j+2)k − 1), for all i ∈ [t], j ∈ [5],

(xi6k − 1) · xi7k · (x(i+1)1k − 1), for all i ∈ [t − 1],

(xi7k − 1) · x(i+1)1k · (x(i+1)2k − 1), for all i ∈ [t − 1],

(xt6k − 1) · xt7k · (x11k − 1),

(xt7k − 1) · x11k · (x12k − 1).

For an upper bound of 6 work days, we add:

{∏7
j=d xijk · ∏d−1

j=1 x(i+1)jk, for all i ∈ [t − 1], d ∈ [7], k ∈ [s − 1],∏7
j=d xtjk · ∏d−1

j=1 x1jk, for all d ∈ [7], k ∈ [s − 1].

C.5) Similarly to Constraint C.4, we add:





(xijs − 1) · xi(j+1)s · (xi(j+2)s − 1), for all i ∈ [t], j ∈ [5],

(xi6s − 1) · xi7s · (x(i+1)1s − 1), for all i ∈ [t − 1],

(xi7s − 1) · x(i+1)1s · (x(i+1)2s − 1), for all i ∈ [t − 1]

(xt6s − 1) · xt7s · (x11s − 1),

(xt7s − 1) · x11s · (x12s − 1).

{∏7
j=d xijs · ∏d−1

j=1 x(i+1)js, for all i ∈ [t − 1], d ∈ [7],∏7
j=d xtjs · ∏d−1

j=1 x1js, for all d ∈ [7].

C.6) For all k ∈ {2, . . . , s − 1}, l ∈ [k − 1], we add:





xijk · xi(j+1)l, for all i ∈ [t], j ∈ [6],

xi7k · x(i+1)1l, for all i ∈ [t − 1],

xt7k · x11l.

3 Implementation of the method.

We have considered all the Boolean polynomials of the previous section in order to implement in
Singular the procedure rotating [3], which determines explicitly the subset of rotating schedules
of RSW,E , which satisfy some of the Constraints C.1-C.6. It is worth highlighting the effectiveness
of this procedure in case of considering rotating schedules related to part time employees for which
the initial workload matrix contains zero entries distributed throughout the week. To test it, we
have considered the following two workload matrices used by Laporte in [8].

W1 =




0 0 1 1 1 1 1
0 0 1 1 1 0 0
0 0 0 2 2 2 2
4 4 2 0 0 1 1


 W2 =




0 0 1 1 1 1 1
0 0 1 1 1 0 0
0 0 0 2 2 2 2
5 5 3 1 1 2 2



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According to Constraints C.1 and C.2, we have also imposed that our rotating schedules must
contain the following two respective arrays.

E1 =




0 0 0 0 0 0 0
0 0 0 0 0 4 4
0 0 0 0 0 0 0
0 0 0 0 0 0 0


 E2 =




0 0 0 0 0 0 0
0 0 0 0 0 4 4
0 0 0 0 0 0 0
0 0 0 0 0 4 4
0 0 0 0 0 0 0




We show in Table 1 the number of rotating schedules related to the previous arrays, according
to the constraints C.3-C.6 which can be imposed. In each case, we also indicate the running
time (r.t.) in seconds which has been necessary in a system with an Intel Core i7-2600, 3.4 GHz
and Ubuntu. The computational cost of those cases marked by an asterisk has turned out to be
excessive for the processing capability of the mentioned computer system.

Constraints |RSW1,E1
| r.t. |RSW2,E2

| r.t.
C.3 C.4 C.5 C.6

15,552 0 648,000 0
x 3 0 360 97

x 36 0 216 8
x 15,552 0 145,152 650

x 81 0 * *
x x 3 1 42 4
x x 3 1 62 14
x x 3 1 71 93

x x 36 1 48 7
x x 9 1 360 13

x x 81 1 * *
x x x 3 1 10 3
x x x 3 1 42 6
x x x 3 1 62 15

x x x 9 1 30 8
x x x x 3 1 10 5

Table 1: Distribution of rotating schedules according to the type of constraints.

The three rotating schedules related to W1 and E1 which satisfies all the constraints are:




4 4 4 3 3 3 3
4 4 2 2 2 4 4
4 4 4 3 3 3 3
4 4 4 1 1 1 1


 ,




4 4 4 3 3 3 3
4 4 2 2 2 4 4
4 4 4 1 1 1 1
4 4 4 3 3 3 3


 ,




4 4 1 1 1 1 1
4 4 2 2 2 4 4
4 4 4 3 3 3 3
4 4 4 3 3 3 3


 .

The ten rotating schedules related to W2 and E2 which satisfy all the constraints are:




4 4 4 4 4 3 3
4 4 4 3 3 4 4
4 4 4 3 3 3 3
4 4 2 2 2 4 4
4 4 1 1 1 1 1




,




4 4 4 4 4 3 3
4 4 2 2 2 4 4
4 4 4 3 3 3 3
4 4 4 3 3 4 4
4 4 1 1 1 1 1




,




4 4 4 3 3 3 3
4 4 1 1 4 4 4
4 4 4 3 3 3 3
4 4 2 2 2 4 4
4 4 4 4 1 1 1




,




4 4 4 3 3 3 3
4 4 2 2 2 4 4
4 4 4 4 1 1 1
4 4 1 1 4 4 4
4 4 4 3 3 3 3




,




4 4 4 4 1 1 1
4 4 2 2 2 4 4
4 4 4 3 3 3 3
4 4 1 1 4 4 4
4 4 4 3 3 3 3




,




4 4 4 4 4 3 3
4 4 2 2 2 4 4
4 4 1 1 1 1 1
4 4 4 3 3 4 4
4 4 4 3 3 3 3




,




4 4 4 4 4 1 1
4 4 2 2 2 4 4
4 4 4 3 3 3 3
4 4 1 1 1 4 4
4 4 4 3 3 3 3




,




4 4 4 4 4 3 3
4 4 4 3 3 4 4
4 4 1 1 1 1 1
4 4 2 2 2 4 4
4 4 4 3 3 3 3




,




4 4 4 4 4 1 1
4 4 1 1 1 4 4
4 4 4 3 3 3 3
4 4 2 2 2 4 4
4 4 4 3 3 3 3




,




4 4 4 4 1 1 1
4 4 1 1 4 4 4
4 4 4 3 3 3 3
4 4 2 2 2 4 4
4 4 4 3 3 3 3




.

The number of possible rotating schedules in Table 1 may also give us information about the
influence of each constraint on the final schedule. Thus, for instance, we can observe how Constraint
C.5 does not have any influence on the design of a rotating schedule of workload matrix W1, i.e.,
it does not diminishes the number of solutions when it is considered alone neither in combination
with other constraints. However, it can be observed that it has influence on the design of rotating
schedules of workload matrix W2.

4 Final remarks and further work.

In the current paper, we have shown how the polynomial method can be used in order to determine
explicitly all the possible rotating schedules which satisfy a given set of constraints and to analyze
their influence on the existence of such schedules. Besides, we have just seen in Table 1 that,
depending on the constraints in which we are interested, the computational cost which is necessary
to obtain a rotating schedule can be excessive even for small orders. A possible alternative to be
considered as further work is to construct such a schedule by using the column generation method
[9], which consists of determining all the shifts of one day, before of obtaining those of the following
day. The number of variables which is necessary to use in such a case is considerably reduced and
hence, the computational cost is improved.
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Abstract

Smart cities designs involve different characteristics, being the use of smart traffic lights
and smart signals two of the most important ones. One of the greatest problems to deal with
is that any physical implementation of these smart traffic signals are expensive in both, money
and resources.

Therefore, any virtual implementation of such signals within a traffic structure can provide
important information in order to test the behavior of different designs previously to a physical
implementation.

In this talk, we present a model which allow accelerated-time simulations of car traffic
using smart signals in a city. The implementation of the model has been developed using
Maxima. The use of this CAS enable the use of different probability distributions for the
different controlled aspects including the possibility of defining an ad-hoc distribution which
can fit better the user necessities for the simulation. The use of a CAS is needed mainly
because in order to deal with an ad-hoc distribution, exact and symbolic computations are
required (for example, for antiderivatives computation). On the other hand, when using a CAS
with classical probability distributions, such as exponential distribution, Poisson distribution
or normal distribution, exact computations produce better results than when approximating
the generated values for such distributions.

In order to easily follow the simulation, a graphical approach of the model has been also
developed using Java. This combination of Java and Maxima allows also to have a portable
implementation of the model which can run in most computer systems.

Finally, this work is part of the future work stated in previous works on accelerated-time
simulations presented in ACA’11 and ACA’12 also in the Nonstandard Session.
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Abstract

We study a class of Padovan-like sequences that can be generated using special matrices
of the third order. We show that terms of any sequence of this class can be expressed via
Bell polynomials and their derivatives that use as arguments terms of another such sequence
with smaller indexes. CAS Mathematica is used for cumbersome calculations and hypothesis
testing.

Keywords
Padovan sequence, Fibonacci numbers, Bell polynomials, integer sequences

1 Introduction

Integer sequences appear in many branches of science. One famous example is Fibonacci numbers
that have been known for more than two thousand years and find applications in mathematics,
biology, economics, computer science. Padovan numbers are much younger - they were introduced
only recently [1]. Below, we will study Padovan-like sequences that can be generated using special
matrices of the third order. We will find expressions for terms of one sequence in terms of another
sequence via Bell polynomials. CAS Mathematica was used for cumbersome calculations and
hypothesis testing.

Let

Aα =




0 α 1
1 0 0
0 1 0




and let




un

vn

wn


 for a time denote the first column of An

α, n ≥ 0. Then

un+1 = αvn + wn, vn+1 = un, wn+1 = vn. (1)

We have
un+1 = αun−1 + un−2, u0 = 1, u1 = 0, u2 = α, (u−1 = 0, ) (2)

An
α =




un un+1 un−1

un−1 un un−2

un−2 un−1 un−3


 . (3)

Some examples of sequences generated by the matrix Aα with references to the On-Line Ency-
clopedia of Integer Sequences (OEIS, http://oeis.org/) are given in Table 1.
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Table 1: Examples of sequences generated by the matrix Aα.

α OEIS First terms Comment
reference

α = 1 A000931 1,0,1,1,1,2,2,3,4,5,7,9,12,16,21, Padovan sequence : un = pn

α = 2 A008346 1,0,2,1,4,4,9,12,22,33,56,88,145, un = fn = Fibonacci(n) + (−1)n

α = 3 A052931 1,0,3,1,9,6,28,27,90,109,297,417,

α = 0 A079978 1,0,0,1,0,0,1,0,0,1,0,0,1,0,0, 1,
un = tn =

{
1, n ≡ 0(mod 3)
0, n ≡ 1, 2(mod 3)

=
(n

3
0

)

α = −1 A077961 1,0,-1,1,1,-2,0,3,-2,-3,5,1,-8,4,9,

α = −2 A077965 1,0,-2,1,4,-4,-7,12,10,-31,-8,72,-15,-152,102

2 Main Result

Now let β ∈ Z, and let vn denote terms of the sequence corresponding to the powers of the matrix
Aβ , and let wn denote terms of the sequence corresponding to the powers of the matrix Aα+β :

An
α+β =




wn wn+1 wn−1

wn−1 wn wn−2

wn−2 wn−1 wn−3


 =




0 α + β 1
1 0 0
0 1 0




n

= (Aα + βe)n = (Aβ + αe)n,

where e =




0 1 0
0 0 0
0 0 0


 .

Terms of the sequence generated by Aα+β can be expressed in terms of the sequence generated
by Aα as follows:

wn =

1∑

ε=0

[n+ε
2 ]∑

s=1

(s − ε)! · βs−ε

(n − s + ε)!
× (4)

×Dε(Bn−s+ε,s(1! · uk1−1, 2! · uk2−1, . . . , (n − 2s + 1 + ε)! · ukn−2s+1+ε−1)),

where ki run over all partitions of n − s + ε into s parts, D0 = id - identity operator, D1 = D =∑(∞)
r=1 xr+1

∂
∂xr

, and

Bn,k(x1, x2, . . . , xn−k+1) =
∑ n!

j1!j2! . . . jn−k+1!

(x1

1!

)j1 (x2

2!

)j2
. . .

(
xn−k+1

(n − k + 1)!

)jn−k+1

(5)

are partial Bell polynomials, and summing is done for all sets j1, j2, . . . , jn−k+1 of non-negative
integers such that j1 + j2 + . . .+ jn−k+1 = k and 1 · j1 +2 · j2 +3 · j3 + . . .+(n−k +1) · jn−k+1 = n
(see [2].)
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3 Examples

3.1 Example 1

For α = β = 1 formula (4) gives a relation between terms of Fibonacci and Padovan sequences:

fn = Fibonacci(n) + (−1)n = (6)

=
1∑

ε=0

[n+ε
2 ]∑

s=1

(s − ε)!

(n − s + ε)!
Dε(Bn−s+ε,s(1! · pk1−1, 2! · pk2−1, . . . , (n − 2s + 1 + ε)! · pkn−2s+1+ε−1)),

and thus for n ≥ 1 the n−th term of the sequence Fibonacci(n) + (−1)n is expressed as sums of
products of the n first terms of the Padovan sequence.

3.2 Example 2

For α = 2 and β = −2 formula (4) gives a relation between terms of sequences fn = Fibonacci(n)+

(−1)n and tn =

{
1, n ≡ 0 (mod 3)
0, n ≡ 1, 2 (mod 3)

, n ≥ 1 :

1∑

ε=0

[n+ε
2 ]∑

s=1

(s − ε)!(−2)s−ε

(n − s + ε)!
Dε(Bn−s+ε,s(1! · fk1−1, 2! · fk2−1, . . . , (n − 2s + 1 + ε)! · fkn−2s+1+ε−1)) =

=

{
1, n ≡ 0 (mod 3)
0, n ≡ 1, 2 (mod 3)

(7)

3.3 Example 3

In particular, the terms of every Padovan-like sequence with α ̸= 0 can be expressed in the same way
via the terms of the ”simplest generator” of the class, namely the sequence 1, 0, 0, 1, 0, 0, 1, 0, 0, ...
generated by α = 0 (OEIS-number A079978, see Table 1). This statement is a far-reaching
generalization of the result announced by J. Vladetta in [3].
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Abstract

We present an algebraic method designed to deal with with reliability in propositional
logic. Our approach may be regarded as an extension of classical bivalued propositional logics,
in which each propositional formula is assigned a certain degree of unreliability. According
to this approach, each formula will be used in the context of reasoning depending on how
much reliability it is associated with. The more reliable a formula is, the more likely will
it be employed in order to get a logical conclusion. This approach involves a quite different
concept to that of probabilistic logics, since the logical notions of tautological consequence
and consistency of a set of formulae are reformulated on behalf of the foreseen unreliability
values. Here we state a relation between these unreliability values associated to tautological
consequence and the calculation of reduced Groebner bases on an ideal of Boolean polynomials.
In this way, our method for assigning these unreliability values to information and reasoning
turns out to have a straightforward translation into algebraic terms. Thus, any knowledge
system using our model can be implemented in a mathematical program, like Maple, CoCoA
or specialized software on Boolean polynomials like Polybori. This work is related to the
algebraic approaches used for multivalued logics. However, these algebraic approaches result to
be impractical since they deal with polynomials of high degree. Otherwise, since our approach
involves only Boolean polynomials, we think that this may be interesting for implementing
expert system managing uncertainty information.

Keywords
Expert Systems, Boolean logic, Groebner Basis

1 Introduction

This paper presents an algebraic method for considering uncertainty on knowledge described by
Boolean propositional logic. This may be regarded as an refinement of the model presented in
[15]. Unlike the algebraic model presented previously, we here present an algebraic model which
involves only Boolean polynomials. This fact implies an important advantage above the previous
one, since we improve the efficiency of inference under uncertainty by means of specialized software
on Boolean polynomials (like Polybori) which runs much faster than a non-specialized computer
algebra system.

This work may be related to the algebraic approaches used for multivalued logics. Neverthe-
less, these algebraic approaches are impractical since they deal with polynomials of high degree.
Otherwise, since our approach involves only Boolean polynomials, we think that this may be in-
teresting for implementing expert systems managing uncertainty information. As an example, we
have implemented our approach using the CAS CoCoA.

2 Reasoning with unreliability

In this section, we will consider formal definitions involved in our model, which were presented in
[15].

Definition 1 (Formula). Let X1, ..., Xm be variables. A formula is defined recursively as follows:

• Xi, where Xi ∈ X1, ..., Xm is a variable (also usually called a proposition)
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• ¬B, where B is a formula

• B ∨ C, where B and C are formulae

Each formula in our model is associated to a certain unreliability degree, indicating how dubious
the information contained in that formula is to the knowledge system. This unreliability degree
can go from 0 to 2n− 1, where n is any natural number. Throughout this paper, we will use letter
q referring to 2n, being the number of possible unreliability degrees we can assign to any formula.
In this way, the definition of an unreliable formula runs as follows:

Definition 2 (Unreliable formula). Let X1, ..., Xm be variables. An unreliable formula is a formula
A along with a value g(A) ∈ N, such that 0 ≤ g(A) ≤ q.

We will make use of C to denote the set of unreliable formulae.

Definition 3 (Valuation). Let A ∈ C. Let x∗1, ..., x
∗
m ∈ {0, 1}, a valuation of the formula A,

A(x∗1, ..., x
∗
m), is defined recursively as follows:

• If A ≡ Xi, then A(x∗1, ..., x
∗
m) = x∗i

• If A ≡ ¬B, then we have that

A(x∗1, ..., x
∗
m) =

{
1 if B(x∗1, ..., x

∗
m) = 0

0 otherwise

• If A ≡ B ∨ C, then

A(x∗1, ..., x
∗
m) =





1 if B(x∗1, ..., x
∗
m) = 1

1 if C(x∗1, ..., x
∗
m) = 1

0 otherwise

Remark 1. We will say that a formulaA holds for a valuation (x∗1, ..., x
∗
m) if and only ifA(x∗1, ..., x

∗
m) =

1.

In classic propositional logic, a set of formulae is said to be consistent if it is possible that all
these formulae hold for a valuation. Now, we will generalize this concept for unreliable formulae.
A set of unreliable formulae is said to be consistent to a certain degree, v, (v-consistent) if the
subset of formulae with an unreliability degree equal or lesser than v is consistent in the usual
sense of classical logic.

Definition 4 (Consistent). Let 0 ≤ v ≤ q.
Let A1, ..., Ar ∈ C.
{A1, ..., Ar} is v-consistent ⇔ ∃x∗1, ..., x∗m ∈ {0, 1} such that:

if Ai ∈ {A1, ..., Ar} and g(Ai) ≤ v, then Ai(x
∗
1, ..., x

∗
m) = 1

Next we will provide a generalization of the notion of tautological consequence in terms of our
model. As was the case with the concept of consistence, we will reach a redefinition of tautological
consequence as applied to unreliable formulae. An unreliable formula, B, is said to be a tautological
consequence to a certain degree, v, of a set of formulae (v-tautological consequence) when B is a
tautological consequence (in the usual sense of classic propositional logic) of the subset of formulae
with an unreliability degree equal or lesser than v.

Definition 5 (Tautological Consequence). Let 0 ≤ v ≤ q.
Let A1, ..., Ar, B ∈ C.
B is a v-tautological consequence of {A1, ..., Ar} if and only if ∀x∗1, ..., x∗m ∈ {0, 1} the following
holds:
if ∀Ai ∈ {A1, ..., Ar|g(Ai) ≤ v} Ai(x

∗
1, ..., x

∗
m) = 1, then B(x∗1, ..., x

∗
m) = 1.

Remark 2. B is a v-tautological consequence of {A1, ..., Ar} independently of the unreliability
degree of B, g(B).
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3 Algebraic approach

In this section we will focus on the procedure to translating logical formulae into polynomials, we
will study some properties about the resulting polynomials, while analyzing the relation between
such polynomials and the logical formulae they stand for.

First of all, we will define the ideal (in order to define Boolean polynomials):

Definition 6 (Ideal J). We define the following ideal in Z2[x1, x2, . . . , xm, y1, . . . , yq]

J = 〈x21 + x1, x
2
2 + x2, . . . , x

2
m + xm, y

2
1 + y1, . . . , y

2
q + yq〉

We will associate a polynomial in Z2[x1, x2, . . . , xm, y1, . . . , yq] to each unreliable formula in C.
This will enable us to focus in an algebraic way the problem of determining the consistency degree
of a set of unreliable formulae and the deduction degree of an unreliable formula as derived from
others.

In our translating procedure we make use of a normal form, NF, of the polynomials on the ideal
J . The use of the normal form interests us because it produces ‘simpler’ polynomials. Prior to
translating formulae affected by unreliability values, we will define the translation into polynomials
of single formulae with no associated unreliability degrees.

Definition 7 (polynomial of a formula). Let A ∈ C. The polynomial associated to the formula A,
qA ∈ Z2[x1, ..., xm], is recursively defined as follows:

• If A ≡ Xi, where Xi is a variable, then qA = xi

• If A ≡ ¬B, then qA = NF(qB + 1, J)

• If A ≡ B ∨ C, then qA = NF(qB · qC , J)

Remark 3. The polynomial qA associated to the formula A is defined regardless of the unreliability
degree of the formula A, g(A).

Next, on the basis of Definition 7, we define another kind of polynomials associated to each
unreliable formula, but also taking into account the unreliability degree of the formulae. These
polynomials will be helpful for determining the consistency degree of formulae and the deduction
degree as derived from others.

Definition 8 (polynomial of an unreliable formula). Given an unreliable formula A ∈ C such that
g(A) = v, the polynomial associated to the unreliable formula A, pA ∈ Z2[x1, ..., xm, y1, . . . , yn], is
defined as follows:

pA = qA · y1y2 · yv
Remark 4. Since the normal form is here used, the indeterminates x1, ..., xm, y1, . . . yq are never
to a power greater than 1.

Remark 5. When the unreliability degree of a formula A is 0, that is to say, g(A) = 0, then
pA = qA.

Next, we will present the main result of this paper:

Theorem 1. Let A1, ..., Ar, C ∈ C.
We have that:

• B is v-tautological consequence of {A1, . . . Ar} ⇔ y1 . . . yv · · · q(B) ∈ 〈q(A1) . . . q(Ar)〉

• {A1, . . . , Ar} is v-consistent ⇔ y1 · . . . · yv 6∈ 〈q(A1) . . . q(Ar)〉

According to the previous result, any knowledge system managing uncertainty on Boolean
propositional can be implemented in a computer algebra system, like CoCoA or Polybori.
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4 Conclusions

In this paper we have presented an algebraic model for managing knowledge affected by different
degrees of unreliability. This model may be regarded as an extension on classical propositional
logics, with addition of unreliability values associated to each proposition. The usual logical no-
tions of tautological consequence and consistency of a given set of formulae have been redefined
on behalf of the unreliability values. The main contribution of this work is concerned with the
link between the unreliability values associated to tautological consequence and the calculation of
reduced Groebner bases on an ideal of polynomials.
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Abstract

We solve systems of multivariate polynomial equations in order to understand flexibility
of objects in two or three dimensions, including protein-like molecules.

Protein flexibility is a major research topic in computational chemistry. In general, a
molecule can be modeled as a polygonal structure whose edges and angles are fixed while
some of the dihedral angles can vary freely. One needs to determine mathematically if such a
structure is flexible. This can be reduced to the analysis of a system of polynomial equations.
Resultant methods have been applied successfully to this problem [3].

In this work we focus on non-generically flexible structures (picture a geodesic dome) that
are rigid but become continuously movable under certain relations. The subject has a long
history: Cauchy (1812) [2], Bricard (1896) [1], Connelly (1978).

In our previous works [4, 5] we began a new approach to understanding flexibility, using
not numeric but symbolic computation. We describe the geometry of the object with a set of
multivariate polynomial equations, which we solve with resultants. Resultants were pioneered
by Bezout, Sylvester, Dixon, and others. Given the resultant, we described an algorithm Solve
that examines it and determines relations for the structure to be flexible. We discovered in this
way conditions for flexibility of an arrangement of quadrilaterals in Bricard [1] which models
molecules and is directly applicable to cyclohexane. In previous works [5], we have shown that
the algorithm can be significantly extended to other molecular structures.

In spite of that success, key questions remained. Bricard asserted that there are three
ways the configuration of quadrilaterals can be flexible, though there are gaps in his proof.
Until recently, our computer programs found only two of them. By the spring of 2012, the
revised and streamlined programs found an example of the third case, but not the most general
third case. The program now finds that case. Furthermore, we now have a computer-assisted
mathematical proof that all cases have been found, thereby completing Bricard’s argument.
This appears to be the first fully algebraic approach for flexibility.

This has great significance, as we now have confidence that the software is capable of fully
analyzing more complex structures, such as cyclooctane.
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Jesús Bonilla
Motor Clásico magazine (Editor in Chief)

c/ Ancora 40, E-28045 Madrid (Spain)

eroanes@mat.ucm.es

Abstract

Apart from the condition of the car, one of the main problems when buying a classic car
(or when estimating its value) is recognizing its originality.

Many times, non-original parts and accessories have been installed, what is not normally
very difficult to find out. But sometimes items from other versions of the same model can be
found in a certain specimen, what is not that easy to recognize.

We have developed in the past Rule Based Expert Systems (RBES) and AI tools for de-
cision taking in different fields (medicine, transportation engineering,...), both using algebraic
inference engines and logic programming.

The key idea of this work is to develop a computer package that guides the user along a
sequence of questions, in order to find out the model and/or version of the car and to detect
non-original elements.

One important fact is that the available information can be incomplete (for instance, all
the available information about the vehicle can be a set of photographs). Moreover, the user
of the system can be sometimes unable to answer all questions, even with all the required
information.

We have decided to use a hybrid approach, because:

• on one hand there are “conclusive items” that are easier to handle using rules in the style
of classic RBES,

• on the other hand, when the vehicle has a mixture of characteristics from different
models/versions, it is easier to compare them with the predefined ones (stored in row
matrix, sequence, list format,...) in order to identify the “closest” model/version.

A computer algebra system offers all the necessary tools for implementing such an approach.
The article is illustrated with a small system (implemented in the computer algebra system
Maple, that takes advantage of its Logic package), devoted to the Porsche 928.
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Deputy Director for Renfe (Spanish Railways) Passengers Services, Spain
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Abstract

The Spanish railway network is radial but very complex to operate, because two different
track gauges, five signalling systems and two electrification systems coexist. Therefore, how
to go on developing the high speed network and which are the best routes for trains are com-
plicated questions. We are developing, in cooperation with the Spanish Railway Foundation,
software packages that can be aids to decision making in these two issues. Yet one more step
in this direction is presented here.

Keywords
Radial railway networks, Anamorphosis maps, Isochrone circle maps, Computer algebra systems

1 Introduction

The Spanish railway network is radial but very complex to operate, because:

• two different track gauges coexist: the so called Iberian gauge (1667mm) and the interna-
tional gauge (1435mm) (used in the high speed network),

• two electrification systems have been used (3000 V DC, 25000 V AC) and, finally,

• there are different signalling systems (ASFA, ASFA 200, LZB, EBICAB, ERTMS).

The shape of the network is not due to a katabasis or anabasis of the whole Spanish society, but to
the location of Madrid (the biggest city and capital) in the centre of the country and the location
of the rest of big cities in the periphery. In 2013 the fares have been lowered and different discounts
(for instance in low demand periods) are offered in order to attract more travelers and to increase
the fraction of population using the high-speed trains.

Regarding the two gauges, there are gauge changeovers at several points, so that both subnet-
works are connected. A subset of the rolling stock is dual gauge. Regarding electrification and
signalling systems, many locomotives and multiple units can read different signalling systems, are
multi-voltage. Even hybrid rolling stock has been developed (730 series).

The high speed network has grown very quickly, and only China has nowadays a longer high
speed railway network. All new lines have been built with double track and top technologies
(≥ 300km/h track design, ERTMS traffic management system, 25000KV AC electrification, etc.).
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The growth of the network has been supported by the different governments and has only been
slowed down due to the economical crisis.

Nevertheless, how to go on developing the high speed network and which are the best routes
for trains are complicated questions. We are developing, in cooperation with the Spanish Railway
Foundation, software packages that can be aids to decision making in these two issues. We have
followed two lines:

• We have developed (within the frame of two research projects signed between the Span-
ish Railways Foundation and the Universidad Complutense de Madrid and the Universidad
Politécnica de Madrid) a computer package that is able to calculate precise timings, consump-
tions, costs, emissions, best routes, etc., for each piece of Renfe’s (main railway operator)
rolling stock running on Adif ’s (infrastructure company) lines [1].

• We have also developed what we have called isochrone circle graphs and a geometric index
for radial railway networks improvement estimation [2]. Isochrone circle graphs were inspired
by pie charts (also known as circle graphs), polar area diagrams (similar to usual pie charts,
but sectors are equal angles and their area is adjusted changing their radii instead of their
amplitude) and anamorphosis maps (also known as central point cartograms or distance
cartograms; where the geometry of the country or region is distorted according to the time
that it takes to travel to different peripheral destinations from a central origin). An isochrone
circle graph corresponding to Spain in 2013 (centred at Madrid) can be found in the figure
below.

We have followed two approaches to compute and draw isochrone circle graphs:

– The first approach [2] was illustrated with a sketch constructed with a Dynamic Geom-
etry System and used sliders to change the input parameters (timing to each peripheral
destination and population of these destinations). It was very comfortable to use, but
the number of destinations considered was somehow fixed (changing it required to con-
struct a complete new sketch).

– In the second approach we designed and implemented a complete new package in the
CAS Maple that takes as input the lists of destinations, best timings and populations
and builds the corresponding isochrone circle graphs and performs all the corresponding
calculations [3]. This approach has yet another advantage: symbolic computations can
be performed, and therefore parameters can be introduced in the computations.

An improved version of [3] will be presented here. It has to be emphasized that now a
population–based version of an anamorphosis map can be drawn or superimposed to the isochrone
circle graph.
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Abstract

Geometric proof is often considered to be a challenging subject in mathematics.
The traditional approach seeks a tightly knitted sequence of statements linked together

by strict logic to prove that a theorem is true. Moving from one statement to the next in
traditional proofs often demands clever, if not ingenious reasoning. An algebraic approach
to geometric proof, however, is more direct and algorithmic in nature. It is based on the
assumption that proving a geometric theorem essentially means solving a problem in algebra.
More precisely, it means solving a system of algebraic equations. An algebraic approach
typically consists of the following steps:

Step-0. An appropriate coordinate system is chosen.

Step-1. The relationships between geometric elements are translated into a system of
algebraic equations based on geometric data (e.g., coordinates of points, lengths and slopes
of line segments, areas of figures, etc.). The expression that implies the thesis statement is
identified.

Step-2. Solving equations in Step-1 by built-in solver in the existing Computer Algebra
System (CAS). The thesis statement is then shown to be a consequence of evaluating the
expression identified in Step-1 using the appropriate solution(s).

Due to the tremendous amount of calculation involved in the process, the algebraic ap-
proach becomes feasible only with the aid of CAS’ powerful symbol manipulation capability.
This presentation will demonstrate the algebraic approach to geometric proof by three exam-
ples using Omega, an online CAS Explorer.

Example-1
We begin with a proof of Heron’s formula concerning the area of any triangle, namely,

A =
√
s(s− a)(s− b)(s− c) (1)

where a, b, c are the three sides of the triangle and s = a+b+c
2

.
Substituting s into (1), the formula becomes

A =

√
(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c)

16
(2)

A triangle with three known sides is shown in Fig. 1 where x is part of the base of the triangle.

Fig. 1

197



By Pythagorean theorem:
h2 + x2 = c2

h2 + (a− x)2 = b2

To obtain h2, we will use the following script of Omega Computer Algebra Explorer
(http://www.vroomlab.com)

eq1:h^2+x^2-c^2$

eq2:h^2+(a-x)^2-b^2$

eliminate([eq1, eq2], [x, h^2])$

factor(%[1]);

The ‘eliminate’ eliminates variable x returns the value of h2.
The script yields

h2 =
(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c)

4a2
.

Therefore,

A =
1

2
ah =

√
(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c)

16

which is (2).

Example-2
Given ∆ABC and two squares ABEF , ACGH in Fig. 2.(a). The squares are sitting

on two sides of ∆ABC, AB and AC, respectively. Both squares are oriented away from the
interior of ∆ABC. ∆BCP is an isosceles right triangle. P is on the same side of A. Prove:
Points E, P and G lie on the same line.

(a) (b)

Fig. 2

Introducing rectangular coordinates shown in Fig. 2.(b).
From Fig. 2.(b), we observe that

y > 0 (3)

x1 < a (4)

x3 > a (5)

CG = CA⇒ (x3 − a)2 + y23 = (x− a)2 + y2 (6)

AB = BE ⇒ (x+ a)2 + y2 = (x1 + a)2 + y21 (7)

CG ⊥ CA⇒ y3y = −(x− a)(x3 − a) (8)

BE ⊥ AB ⇒ y1y = −(x1 + a)(x+ a) (9)

Solving systems of equation (6), (7), (8), (9), we obtain four set of solutions:
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x1 = −y − a, y1 = x+ a, x3 = y + a, y3 = a− x (10)

x1 = y − a, y1 = −x− a, x3 = y + a, y3 = a− x (11)

x1 = −y − a, y1 = x+ a, x3 = a− y, y3 = x− a (12)

x1 = y − a, y1 = −x− a, x3 = a− y, y3 = x− a (13)

Among them, only (10) truly represents the coordinates in Fig. 2.(b). The determinant

1

2

∣∣∣∣∣∣

−y − a x+ a 1
0 a 1

y + a a− x 1

∣∣∣∣∣∣

is zero which implies that E, P , and G are on the same line. See Fig. 3

Fig. 3

The reason we do not consider (11), (12), (13) is due the fact that (11) contradicts (4)
since y > 0, a > 0⇒ x1 = y−a = −a+y > −a. By (3), (12) and (13) indicate x3 = a−y < a
which contradicts (5).

Example-3
The area A of a triangle by three points (x1, y1), (x2, y2), (x3, y3) in a rectangular coordi-

nate system can be expressed as
∣∣ 1
2
D
∣∣, where D is the determinant of matrix:




x1 y1 1
x2 y2 1
x3 y3 1




By Heron’s formula (1) in Example-1, A2 = s(s − a)(s − b)(s − c). Let B =
∣∣ 1
2
D
∣∣, B2 =∣∣ 1

2
D
∣∣2 =

(
1
2
D
)2

.
It is shown by Computer Algebra system that A2 −B2 = 0 (See Fig. 4).
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Fig. 4

A2 − B2 = (A − B)(A + B) = 0 implies that A = B since both A and B are positive
quantities.
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Hyperbolic uniformizations through computations on ternary
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Abstract

Orders in indefinite quaternion algebras provide Fuchsian groups acting on the Poincare
half-plane, used to construct the associated Shimura curves.

We explain how, by using embedding theory, the elements of those Fuchsian groups depend
on representations of integers by suitable ternary quadratic forms. Thus the explicit computa-
tion of those representations leads to explicit presentations and fundamental domains of those
Fuchsian groups, the computation of CM points, and a rich interpretation of the points in the
complex upper half-plane.

Keywords
Fuchsian groups, quaternion algebras, quadratic forms, embeddings

1 Introduction

Let D,N be natural numbers such that gcd(D,N) = 1 and D is the product of an even number
of different primes. Then there exists an indefinite quaternion algebra H over Q, unique up to
isomorphism, with discriminant D, given by a Q-basis {1, i, j, ij} satisfying the relations i2 = a,
j2 = b and ij = −ji (plus the associative property) for some a, b ∈ Q∗, a > 0. As usual, we write

H =
(

a,b
Q

)
. Since H is indefinite, we can fix an embedding Φ : H ↪→ M(2,R).

Let us consider an Eichler order of level N , O(D,N), that is, a Z-module of rank 4, subring of
H, intersection of two maximal orders, unique up to conjugation. Basics on quaternion algebras
and orders can be found at [7], [9].

Consider Γ(D,N) := Φ({α ∈ O(D,N) : n(α) = 1}), the image of the group of units of positive
norm. Then Γ(D,N) ⊆ SL(2,R) is a Fuchsian group of the first kind acting on the Poincare
half-plane H = {x + ιy | y > 0}, and the quotient Γ(D,N) \ H yields a Riemann surface. If
D = 1, then H = M(2,Q), Γ(D,N) = Γ0(N) and this construction leads to the modular curves
usually denoted by X0(N). Otherwise, if D > 1, these Riemann surfaces are already compact and
Shimura’s work (cf. [8]) provides a canonical model for Γ(D,N) \ H with nice properties, that
will be denoted by X(D,N), and a modular interpretation. X(D,N) are called Shimura curves
associated to the subgroups Γ(D,N), and they are involved in some spectacular results as the
proof of Taniyama-Shimura-Weil modularity conjecture (cf. [5], [10]).

By construction, it is not so easy to make explicit these groups Γ(D,N) and to compute, for
example, the hyperbolic uniformization of the associated Shimura curves. In particular the lack
of cusps in these groups makes a big difference with the well-known modular case. Anyway, the
fundamental domains of theses curves allows a rich interpretation of the points in the complex
upper half-plane, which can be elliptic, CM-points, etc. and even binary quadratic forms show up
(cf. [3]).

The goal of this paper is to make explicit the relationship between the Fuchsian group Γ(D,N)
and representations of integers by suitable ternary quadratic forms, in such a way that computa-
tional results on quadratic forms can be applied to this arithmetic and geometric setting.
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2 The group of quaternion transformations via embeddings

We deal with embeddings of quadratic fields into quaternion algebras, taking into account the
arithmetic of orders in both algebraic structures.

From now on consider a quadratic field F = Q(
√
d), and Λ = Λ(d,m) ⊂ F the quadratic order

of conductor m. It is well-known that Λ(d,m) = Z[1,mw], where w =
√
d if d ≡ 2, 3 mod 4, and

w = 1+
√
d

2 if d ≡ 1 mod 4. For m = 1, Λ is the integer ring of F .
We denote by E(H,F ) the set of embeddings of the quadratic field F in the quaternion algebra

H. If it is non empty, we consider the restriction to the orders

E(O,Λ) := {ϕ : ϕ ∈ E(H,F ), ϕ(Λ) ⊂ O}.

An embedding is called optimal if ϕ(F ) ∩ O = ϕ(Λ), and E∗(O,Λ) will denote the set of optimal
embeddings.

The group NorO acts on E∗(O,Λ), and we can consider the quotient E∗(O,Λ)/NorO. In the
case O = O(D,N), its class number can be computed following results by Eichler (cf. [1], [6]).

In our setting, those embeddings will be very interesting because, by using fundamental units
in quadratic orders, they allow to compute elements in the Fuchsian group Γ(D,N). They are also
relevant to compute the fundamental domain of the Shimura curvesX(D,N) and the corresponding
tessellation of H, and interesting points as elliptic and complex multiplication ones. Note that,
because of the lack of cusps, a lot of information is concentrated on those points.

Remark 2.1 Let ε be a fundamental unit in the quadratic order Λ(d,m). Put ξ := ε if n(ε) = 1
and ξ := ε2 if n(ε) = −1. Then:

ϕ ∈ E(O(D,N),Λ(d,m)) =⇒ Φ(ϕ(ξn)) ∈ Γ(D,N), ∀n ∈ Z.

Conversely, every quaternion transformation can be obtained from embeddings of quadratic
orders in the quaternion order as above, as it is shown in the following theorem, proved at [1].

Theorem 2.2 Let γ ∈ Γ(D,N), D > 1.
Then there exists a quadratic order Λ(d,m), a number n ∈ Z − {0} and an optimal embedding
ϕ ∈ E∗(O(D,N),Λ(d,m)) such that Φ(ϕ(εn)) = γ, where ε is the fundamental unit of Λ(d,m).
Moreover, elliptic transformations come from imaginary quadratic fields, and hyperbolic transfor-
mations come from real quadratic fields.

In the proof of that theorem the involved quadratic field Q(
√
d) is explicit: given γ ∈ Γ(D,N),

then d = tr(γ)2 − 4.
As a consequence of the theorem, all elements in Γ(D,N) can be computed from the explicit

computation of embeddings by using the fundamental units in quadratic fields, which can be
computed algorithmically (cf. [4]). Actually it can be done by using computer algebra systems as
Magma.

3 Computations via quadratic forms

Next, we shall use quadratic forms to construct those embeddings. Mainly we will use the ternary
quadratic form nO,3, induced by the reduced norm in a quaternion order O, when we restrict to
pure quaternions. To get an expression of the quadratic form, up to Z equivalence, a basis of the
order need to be fixed. We will use normalized basis {1, v2, v3, v4} satisfying tr(v2) = tr(v3) = 0,
tr(v4) ∈ {0, 1} (cf. [1]).

Remark 3.1 Consider the family of quaternion algebras of discriminant D = 2p, p ≡ 3 mod 4,

HA(p) =
(

p,−1
Q

)
, called small ramified algebras of type A. Then a family of Eichler orders is given

by OA(2p,N) := Z
[
1, i, Nj, 1+i+j+ij

2

]
, N |p−1

2 square-free. The corresponding ternary normic
forms are: nH,3(Y,Z, T ) = −pY 2+Z2−pT 2 and nO,3 = (1−2p)X2−pY 2+N2Z2+2pXY −2NXZ.

Given a quadratic form f in n variables and A(f) the associated matrix, consider the set of
integer representations of a number δ:

R (f, δ;Z) := {α ∈ Zn : f(α) = δ} = {α ∈ Zn : αtA(f)α = δ}.
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We denote by R∗ (f, δ;Z) those satisfying the condition gcd(α1, . . . , αn) = 1, called primitive
representations.

The following result is proved in [1] (cf. Theorem 4.26, Corollary 4.27). Note that nZ+2O,3

needs to be used instead of nO,3.

Theorem 3.2 Let O ⊆ H an Eichler order given by a normalized basis B = {1, v2, v3, v4}.
Let Λ = Λ(d,m) ⊆ Q(

√
d) a quadratic order of conductor m and denote DΛ its discriminant.

Then there is a bijective mapping

σ : R (nZ+2O,3,−DΛ;Z) −→ E(O,Λ)
(x, y, z) 7→ ϕ ,

where ϕ is the embedding defined by ϕ(mw) =
(

rm−z tr(v4)
2 , x, y, z

)
B

, for r = 0 if d ≡ 2, 3 mod 4,

and r = 1 if d ≡ 1 mod 4. Namely,

ϕ(
√
d) =





(−z tr(v4)

2m
,
x

m
,
y

m
,
z

m

)

B
if d ≡ 2, 3 mod 4,

(−z tr(v4)

m
,

2x

m
,

2y

m
,

2z

m

)

B
if d ≡ 1 mod 4.

Moreover, primitive representations are in bijection with optimal embeddings.

Example 3.3 Consider a maximal order in a small ramified quaternion algebra of type A,

OA(14, 1) = Z[1, i, j, 1+i+j+ij
2 ] ⊆ HA(7) =

(
7,−1
Q

)
.

Consider the quadratic orders Λ(−1, 1), Λ(−1, 3) and Λ(−1, 15), in Q(
√
−1).

Computing representations of 1, 9 and 225 by the ternary normic form

nZ+2OA(14,1),3(X,Y, Z) = −28X2 + 4Y 2 − 13Z2 − 28XZ + 4Y Z,

we obtain the embeddings ϕs ∈ E(HA(7), F ), given by ϕs(w) = ωs, 1 ≤ s ≤ 4,
where ω1 := j, ω2 := 3i+ 8j, ω3 := 1/3i+ 4/3j, and ω4 := 1/15i+ 22/15j + 2/5ij.

Bullets in next table shows which embeddings are on each set, optimal or not.

ϕ1 ϕ2 ϕ3 ϕ4

E(OA(7, 1),Λ(−1, 1)) • • − −
E∗(OA(7, 1),Λ(−1, 1)) • • − −
E(OA(7, 1),Λ(−1, 3)) • • • −
E∗(OA(7, 1),Λ(−1, 3)) − − • −
E(OA(7, 1),Λ(−1, 15)) • • • •
E∗(OA(7, 1),Λ(−1, 15)) − − − •

Considering the class groups of optimal embeddings and primitive representation, it is proved
that the map σ induce a bijection between the class groups. Thus, the class number of equivalent
representations can be computed too, using the classification of optimal embeddings quoted in
previous section. At the example above, the integer 1 has two inequivalent representations by the
ternary form nZ+2OA(14,1),3; however, the integer 9 has four inequivalent ones.

As a consequence of the Theorems 2.2 and 3.2, the elements in the group Γ(D,N) can be found
explicitly by computing representations by ternary quadratic forms.

Next, we show explicit expressions depending only on representations of integers by ternary
quadratic forms the small ramified parametric case presented in Remark 3.1. They are applied
to the computation of the elliptic elements in Γ(2p,N) and its corresponding points, and to the
computation of the complex multiplication (CM) points. Both are the interesting points in this
context of hyperbolic uniformization of Shimura curves in the Poincaré half-plane.

We use the explicit embedding Φ :
(

p,−1
Q

)
↪→ M(2,Q(

√
p)) ⊂ M(2,R) given by

Φ(x+ y
√
p+ z

√
−1 + t

√−p) =

(
x+ y

√
p z + t

√
p

−(z − t√p) x− y√p

)
.
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Proposition 3.4 Let p ≡ 3 mod 4 and N |p− 1

2
square-free. Fix the quaternion algebra HA(p),

the Eichler order OA(2p,N) = Z[1, i, Nj, 1+i+j+ij
2 ], and the group of quaternion transformations

Γ(2p,N) defining the Shimura curve X(2p,N). Then:

i) γ ∈ Γ(2p,N) is an elliptic linear fractional transformation on H of order 2 if, and only if,

γ =
1

2

(
(2x+ z)

√
p (2Ny + z) + z

√
p

−(2Ny + z) + z
√
p −(2x+ z)

√
p

)
, where (x, y, z) ∈ R∗(nZ+2O,3, 4;Z).

In this case, the corresponding elliptic point is τ =
(2x+ z)

√
p± 2ι

−(2Ny + z) + z
√
p
∈ H.

ii) The complex points of X(D,N) with complex multiplication by a quadratic order Λ are

{
(2x+ z)

√
p±√−DΛι

−(2Ny + z) + z
√
p
∈ H : (x, y, z) ∈ R∗(nZ+2O,3,−DΛ;Z)

}
.

We can conclude that from a fine study of the algorithms to compute representations of integers
by ternary quadratic forms, new results for the complexity of computations related to the Shimura
curves X(D,N) can be drawn. They would be of great interest not only in the area of Number
Theory but in applications to other areas as Coding Theory or Cryptography.
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Abstract

We present an algorithmic method to effectively compute a symplectic representation of
any finite group G, coming from its action on a Riemann Surface M of some fixed genus
g ≥ 2. The action of the group may be specified by its signature or by the explicit group
as a permutation group with generators. In particular, we find and provide a drawing of a
fundamental polygon for M capturing this action of G, a symplectic basis for H1(M,Z) and
the action of G represented in such a basis.

In many cases we can also explicitly obtain a family of Riemann matrices of principally
polarized abelian varieties of dimension g, with the action of G, describing in such a way
part of the singular locus of Ag. We implement this procedure over SAGE[2], and we present
several examples using it.

This work has been published as “Adapted hyperbolic polygons and symplectic represen-
tations for group actions on Riemann surfaces” [1] and the SAGE routines are available online
at https://sites.google.com/a/u.uchile.cl/polygons/home
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Abstract

Determining if an Abelian variety is decomposable and finding such decompositions is a
problem that has been studied by many mathematicians. Methods exists in finding such
decompositions for certain classes of curves; [4], [5]. In this paper we consider the superelliptic
curves for genus g ≥ 2 and determine decompositions of them. Complete proofs are intended
in [2].

Keywords
Jacobians of curves, superelliptic curves, automorphism group

1 Introduction

Let X be a genus g ≥ 2 algebraic curve defined over C. We choose a symplectic homology basis
for X , say {A1, . . . , Ag, B1, . . . , Bg}, such that the intersection products Ai ·Aj = Bi ·Bj = 0 and
Ai ·Bj = δij , where δij is the Kronecker delta. We choose a basis {wi} for the space of holomorphic

1-forms such that
∫
Ai
wj = δij . The matrix Ω =

[∫
Bi
wj

]
is the period matrix of X . The columns

of the matrix [I |Ω] form a lattice L in Cg. The complex torus Cg/L is called the Jacobian of X
is denoted by Jac (X ).

Let Hg be the Siegel upper-half space. Then Ω ∈ Hg and there is an injection

Mg ↪→ Hg/Sp2g(Z) =: Ag

where Sp2g(Z) is the symplectic group. A non-constant morphism f : A→ B between two Abelian
varieties which is surjective is called an isogeny. An Abelian variety is called decomposable if it is
isogenous to a product of Abelian varieties, it is simple if it has non non-trivial Abelian subvarieties.
An Abelian variety is called completely decomposable if it is isogenous to a product of elliptic
curves.

A map of algebraic curves f : X → Y is called a maximal covering if it does not factor over
a nontrivial isogeny. A map f : X → Y induces maps between their Jacobians f∗ : Jac (Y) →
Jac (X ) and f∗ : Jac (X ) → Jac (Y). When f is maximal then f∗ is injective and ker(f∗) is
connected, see [10] (p. 158) for details. Hence, Jac (X )∼= Jac (Y) × A, where A is some Abelian
variety.

Hence, coverings f : X → Y give factors of the jacobian Jac (X ). Such methods have been
explored for genus 2 curves in [7, 11, 12]. If the covering f : X → Y is a Galois covering then its
monodromy group is isomorphic to a subroup H of the automorphism group G = Aut (X ). Hence
a common procedure to produce decompositions of Jacobians is to explore the automorphism group
of the curve.

Fix an integer g ≥ 2 and a finite group G. Let C1, . . . , Cr be conjugacy classes 6= {1} of G.
Let C = (C1, . . . , Cr), viewed as unordered tuple, repetitions are allowed. We allow r to be zero,
in which case C is empty.

Consider pairs (X,µ), where X is a curve and µ : G→ Aut (X) is an injective homomorphism.
Mostly we will suppress µ and just say X is a curve with G-action, or a G-curve, for short. Two
G-curves X and X ′ are called equivalent if there is a G-equivariant isomorphism X → X ′.

We say a G-curve X is of ramification type (g,G,C) if the following holds: Firstly, g is the
genus of X. Secondly, the points of the quotient X/G that are ramified in the cover X → X/G
can be labelled as p1, . . . , pr such that Ci is the conjugacy class in G of distinguished inertia group
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generators over pi (for i = 1, . . . , r). (Distinguished inertia group generator means the generator
that acts in the tangent space as multiplication by exp(2π

√
−1/e), where e is the ramification

index). For short, we will just say X is of type (g,G,C).
If X is a G-curve of type (g,G,C) then the genus g0 of X/G is given by the Riemann-Hurwitz

formula

(1)
2 (g − 1)

|G| = 2 (g0 − 1) +

r∑

i=1

(1− 1

ci
)

where ci is the order of the elements in Ci.
Note that g0 (the orbit genus) depends only on g, |G| and the signature c = (c1, . . . , cr) of

the G-curve X; see [6] for details.
Define H = H(g,G,C) to be the set of equivalence classes of G-curves of type (g,G,C). By

covering space theory (or the theory of Fuchsian groups), H is non-empty if and only if G can be
generated by elements α1, β1, ..., αg0 , βg0 , γ1, ..., γr with γi ∈ Ci and

∏
j [αj , βj ]

∏
i γi = 1, where

[α, β] = α−1β−1αβ.
Let Mg be the moduli space of genus g curves, and Mg0,r the moduli space of genus g0

curves with r distinct marked points, where we view the marked points as unordered (contrary
to usual procedure). Consider the map Φ : H → Mg forgetting the G-action, and the map
Ψ : H → Mg0,r mapping (the class of) a G-curve X to the class of the quotient curve X/G
together with the (unordered) set of branch points p1, . . . , pr. If H 6= ∅ then Ψ is surjective and
has finite fibers, by covering space theory. Also Φ has finite fibers, since the automorphism group
of a curve of genus ≥ 2 is finite.

The set H carries a structure of quasi-projective variety (over C) such that the maps Φ and Ψ
are finite morphisms. If H 6= ∅ then all components of H map surjectively to Mg0,r (through a
finite map), hence they all have the same dimension δ(g,G,C) := dim Mg0,r = 3g0 − 3 + r.

Let M(g,G,C) denote the image of Φ, i.e., the locus of genus g curves admitting a G-action
of type (g,G,C). If this locus is non-empty then each of its components has dimension δ(g,G,C).
Note that δ(g,G,C) depends only on g, |G| and the signature, so we write δ(g,G, c) := δ(g,G,C).

2 Decomposition of Jacobians

Below we describe two methods of decomposing Jacobians using the automorphisms of curves.
Both of these methods are explored in [2] to decompose Jacobians of all superelliptic curves via
automorphisms.

2.1 Decomposing the Jacobian by group partitions

Let X be a genus g algebraic curve with automorphism group G := Aut (X ). Let H ≤ G such
that H = H1 ∪ · · · ∪Ht where the subgroups Hi ≤ H satisfy Hi ∩Hj = {1} for all i 6= j. Then,

Jac t−1(X )× Jac |H|(X/H) ∼= Jac |H1|(X/H1)× · · · Jac |Ht|(X/Ht)

The group H satisfying these conditions is called a group with partition. Elementary Abelian
p-groups, the projective linear groups PSL2(q), Frobenius groups, dihedral groups are all groups
with partition.

Let H1, . . . ,Ht ≤ G be subgroups with Hi ·Hj = Hj ·Hi for all i, j ≤ t, and let gij denote the
genus of the quotient curve X/(Hi ·Hj). Then, for n1, . . . , nt ∈ Z the conditions

∑
ninjgij = 0,∑t

j=1 njgij = 0, imply the isogeny relation

∏

ni>0

Jac ni(X/Hi)∼=
∏

nj<0

Jac |nj |(X/Hj)

In particular, if gij = 0 for 2 ≤ i < j ≤ t and if g = gX/H2
+ · · ·+ gX/Ht

, then

Jac (X )∼= Jac (X/H2)× · · · × Jac (X/Ht)

The proof of the above statements can be found in [4]. For curves of small genus (i.e., g = 2, 3, 4)
we can completely determine the decompositions of Jacobians based on their automorphisms. For
g = 3, we have the following Theorem; see [2], [13] for details.
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Theorem 1. Let X be a genus 3 curve and G := Aut (X ).
a) If X is hyperelliptic then

i) If G∼=V4 or C2 × C4, then Jac (X )∼=E × Jac (X2), where X2 is a genus 2 cuerve.
ii) If G∼=C3

2 then Jac (X )∼=E1 × E2 × E3

iii) If G∼=D12, C2 × S4 or any of the groups of order 24 or 32, then Jac (X )∼=E2
1 × E2.

b) If X is non-hyperelliptic then the following hold
i) If G∼=C2 then Jac (X )∼=E × Jac (X2) for some curves E and X2.
ii) If G∼=V4 then Jac (X )∼=E1 × E2 × E3 is isogenous to the product of three elliptic curves
iii) If G∼=S3, D8 or has order 16 or 48 then Jac (X )∼=E2

1 × E2 for some curves E1 and E2.
iv) If G∼=S4, L3(2) or C3

2oS3 then Jac (X )∼=E3 for some elliptic curve E.

It is possible that given the equation of X one can determine the equations of the elliptic or
genus 2 components in all cases of the theorem as in [13] and [14].

2.2 Decomposing the Jacobians of curves with large groups

Given a generating system (0; g1, . . . , gr) for a group G we get a corresponding cover f : X → P1(k).
From this we can construct a sysmplectic basis of H1(X,Z) and the action of G on this basis.

Let W be a non-trivial irreducible representation of G V an associated complex irreducible
representation and sV its Schur index, as denoted in [5]. There is an Abelian variety BW and an

isogeny Jac W (X) ∼ B
dimV
sV

W . If the subvariety BW of Jac W (X) is of dimension 1, then Jac W (X)
is completely decomposable. This provides another method of finding completely decomposable
Jacobians. The method could work for all subgroups H < G such that g(X/H) = 0. In [5] the
authors use this method to find decomposition of Jacobians for all curves X which have large
automorphism groups (i.e., |Aut (X )| > 4(g − 1)). As we will see next, the method could be used
for other groups as well. This paper focuses on superelliptic curves.

3 Jacobians of superelliptic curves

A curve X is called superelliptic if there exist an element τ ∈ Aut (X ) such that τ is central and
g (X/〈τ〉) = 0. Denote by K the function field of Xg and assume that the affine equation of Xg is
given some polynomial in terms of x and y.

Let H = 〈τ〉 be a cyclic subgroup of G such that |H| = n and H / G, where n ≥ 2. Moreover,
we assume that the quotient curve Xg/H has genus zero. The reduced automorphism group
of Xg with respect to H is called the group Ḡ := G/H, see [1], [8].

Assume k(x) is the genus zero subfield of K fixed by H. Hence, [K : k(x)] = n. Then, the
group Ḡ is a subgroup of the group of automorphisms of a genus zero field. Hence, Ḡ < PGL2(k)
and Ḡ is finite. It is a classical result that every finite subgroup of PGL2(k) is isomorphic to one
of the following: Cm, Dm, A4, S4, A5.

The group Ḡ acts on k(x) via the natural way. The fixed field of this action is a genus 0 field,
say k(z). Thus, z is a degree |Ḡ| := m rational function in x, say z = φ(x). We illustrate with the
following diagram:

K = k(x, y)

n H

k(x) = k(x, yn)

m Ḡ

E = k(z)

Xg
φ0 H

��
P1(k)

φ Ḡ

��
P1(k)

Figure 1: The automorphism groups and the corresponding covers

It obvious that G is a degree n extension of Ḡ and Ḡ is a finite subgroup of PGL2(k). Hence,
if we know all the possible groups that occur as Ḡ then we can determine G and the equation for
K. The list of all groups of superelliptic curves and their equations are determined in [8] and [9].
In this paper we complete decompositions of Jacobians of superelliptic curves. Complete proofs
and details are intended in [2].
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Example 1 (The Klein 4-group). If X is an hyperelliptic curve and Ḡ∼=C2 then G∼=V4. Let X
be a V4-curve. There are three elliptic involutions in V4, say τ1, τ2, τ1τ2. Since X is a superelliptic
curve then one of them has to fix a genus 0 field, say g(X/〈τ1〉) = 0. Hence X is hyperelliptic.
Then, X has equation

Y 2 = X2g+2 + agX
2g + . . . a1x

2 + 1,

see [3]. Then τ2 and τ1τ2 fix the curves Y 2 = Xg+1 + agX
g + · · ·+ a1X + 1 and Y 2 = X(Xg+1 +

agX
g + · · ·+ a1X + 1). Hence, the Jacobian of X is the product

Jac (X )∼= Jac (C)× Jac (C ′)

where g(C) =
[
g−1

2

]
and g(C ′) =

[
g
2

]
.

In general, if Ḡ∼=Cm then G∼=Cn×Cm or G∼=Cmn. We work out details of these cases in [2].
In this work we treat in detail all the cases when Ḡ is isomorphic to Cm, Dm, A4, S4, A5. From
work in [1], [8], and [9] we know all possible groups, their signatures, and the equations of the
curves for all superelliptic curves. Using this data and the methods above we decompose Jacobians
of all superelliptic curves.
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ON THE AUTOMORPHISMS OF HASSETT’S MODULI SPACES

ALEX MASSARENTI

This is an extract from a joint work with Massimiliano Mella.

Abstract. The stackMg,n, parametrizing Deligne-Mumford n-pointed genus g stable
curves, and its coarse moduli space Mg,n have been among the most studied objects in
algebraic geometry for several decades. Hassett introduced new compactificationsMg,A

of the moduli stack Mg,n and Mg,A for the coarse moduli space Mg,n by assigning ra-
tional weights A = (a1, ..., an), 0 < ai 6 1 to the markings. In particular the classical
Deligne-Mumford compactification arises for a1 = ... = an = 1. These spaces appear as
intermediate steps of the blow-up construction ofM0,n developed by M. Kapranov, while
in higher genus may be related to the LMMP on Mg,n. We deal with fibrations and
automorphisms of Hassett’s spaces. Our approach consists in extending some techniques
already used to tackle the same kind of problems for the Deligne-Mumford compactifi-
cation of Mg,n. As special cases we will recover known results on the automorphisms
groups ofMg,n andMg,n. Namely Aut(Mg,n) ∼= Aut(Mg,n) ∼= Sn for any g, n such that
2g − 2 + n > 3.

Introduction and Survey on the automorphisms of Mg,n

The stackMg,n, parametrizing Deligne-Mumford n-pointed genus g stable curves, and
its coarse moduli space Mg,n have been among the most studied objects in algebraic
geometry for several decades.
In [Ha] B. Hassett introduced new compactificationsMg,A[n] of the moduli stackMg,n and
Mg,A[n] for the coarse moduli space Mg,n, by assigning rational weights A = (a1, ..., an),
0 < ai 6 1 to the markings. In genus zero some of these spaces appear as intermediate
steps of the blow-up construction of M0,n developed by M. Kapranov in [Ka], while in
higher genus may be related to the LMMP on Mg,n.
In this paper we deal with fibrations and automorphisms of these Hassett’s spaces. Our
approach consists in extending some techniques introduced by A. Bruno and the authors
in [BM1], [BM2] and [Ma] to study fiber type morphisms from Hassett’s spaces and then
apply this knowledge to compute their automorphisms groups.
The biregular automorphisms of the moduli space Mg,n of n-pointed genus g-stable curves
and of its Deligne-Mumford compactification Mg,n have been studied in a series of papers,
for instance [BM2], [Ro], [GKM] and [Ma]. In [BM1] and [BM2], A. Bruno and the second
author, thanks to Kapranov’s works [Ka], managed to translate issues on the moduli space
M0,n in terms of classical projective geometry of Pn−3. Studying linear systems on Pn−3
with particular base loci they derived a theorem on the fibrations of M0,n.

Date: May 2013.
1991 Mathematics Subject Classification. Primary 14H10; Secondary 14D22, 14D06.
Key words and phrases. Moduli space of curves, pointed rational curves, fiber type morphism, automor-
phism.
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2 ALEX MASSARENTI

Theorem. [BM2] Let f : M0,n → M0,r be a dominant morphism with connected fibers.
Then f factors with a forgetful map.

Via this theorem on fibrations they construct a morphism of groups between Aut(Mg,n)
and Sn, the symmetric group on n elements, and prove the following theorem:

Theorem. [BM2, Theorem 3] The automorphisms group of M0,n is isomorphic to Sn for
any n > 5.

As already noticed some of the Hassett’s spaces are partial resolutions of Kapranov’s
blow-ups. The main novelty is that not all forgetful maps are well defined as morphisms.
Nonetheless we are able to control this problem and derive a weighted version of the
fibration theorem. This allows us to compute the automorphisms of all intermediate steps
of Kapranov’s construction, see Construction 1.4 for the details.

Theorem. The automorphisms groups of the Hassett’s spaces appearing in Construction
1.4 are given by

- Aut(M0,Ar,s[n])
∼= (C∗)n−3 × Sn−2, if r = 1, 1 < s < n− 3,

- Aut(M0,Ar,s[n])
∼= (C∗)n−3 × Sn−2 × S2, if r = 1, s = n− 3,

- Aut(M0,Ar,s[n])
∼= Sn, if r > 2.

In higher genus we approach the same problem. This time the fibration theorem is
inherited by [GKM, Theorem 0.9], where A. Gibney, S. Keel and I. Morrison gave an
explicit description of the fibrations Mg,n → X of Mg,n on a projective variety X in the
case g > 1. This theorem has been used extensively in [Ma] to construct, as in the genus
zero case, morphisms of groups between Aut(Mg,n) and Sn, in order to prove the following
theorem:

Theorem. [Ma, Theorem 3.9] LetMg,n be the moduli stack parametrizing Deligne-Mumford
stable n-pointed genus g curves, and let Mg,n be its coarse moduli space. If 2g− 2 + n > 3
then

Aut(Mg,n) ∼= Aut(Mg,n) ∼= Sn.

For 2g − 2 + n < 3 we have the following special behavior:
- Aut(M1,2) ∼= (C∗)2 while Aut(M1,2) is trivial,
- Aut(M0,4) ∼= Aut(M0,4) ∼= Aut(M1,1) ∼= PGL(2) while Aut(M1,1) ∼= C∗,
- Aut(Mg) and Aut(Mg) are trivial for any g > 2, [GKM, Corollary 0.12].

For Hassett’s spaces the situation is a bit different because, in general, not all permu-
tations of the markings define an automorphism of the space Mg,A[n]. Indeed in order
to define an automorphism permutations have to preserve the weight data in a suitable
sense. We denote by AA[n] the subgroup of Sn of permutations inducing automorphisms
of Mg,A[n] andMg,A[n]. Building on [Ma, Sections 3,4] we prove the following statement:

Theorem. Let Mg,A[n] be the Hassett’s moduli stack parametrizing weighted n-pointed
genus g stable curves, and letMg,A[n] be its coarse moduli space. If g > 1 and 2g−2+n > 3
then

Aut(Mg,A[n]) ∼= Aut(Mg,A[n]) ∼= AA[n].
Furthermore
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ON THE AUTOMORPHISMS OF HASSETT’S MODULI SPACES 3

- Aut(M1,A[2]) ∼= (C∗)2 while Aut(M1,A[2]) is trivial,
- Aut(M1,A[1]) ∼= PGL(2) while Aut(M1,A[1]) ∼= C∗.

The paper is organized as follows. In the first section we recall Hassett’s and Kapranov’s
constructions. The second section is devoted to prove the fibration theorems and in the
third we compute the automorphisms groups.

1. Hassett’s moduli spaces and Kapranov’s realizations of M0,n

We work over an algebraically closed field of characteristic zero. Let S be a Noetherian
scheme and g, n two non-negative integers. A family of nodal curves of genus g with n
marked points over S consists of a flat proper morphism π : C → S whose geometric fibers
are nodal connected curves of arithmetic genus g, and sections s1, ..., sn of π. A collection
of input data (g,A) := (g, a1, ..., an) consists of an integer g > 0 and the weight data: an
element (a1, ..., an) ∈ Qn such that 0 < ai 6 1 for i = 1, ..., n, and

2g − 2 +
n∑

i=1

ai > 0.

Definition 1.1. A family of nodal curves with marked points π : (C, s1, ..., sn) → S is
stable of type (g,A) if

- the sections s1, ..., sn lie in the smooth locus of π, and for any subset {si1 , ..., sir}
with non-empty intersection we have ai1 + ...+ air 6 1,

- Kπ +
∑n

i=1 aisi is π-relatively ample.

B. Hassett in [Ha, Theorem 2.1] proved that given a collection (g,A) of input data, there
exists a connected Deligne-Mumford stackMg,A[n], smooth and proper over Z, representing
the moduli problem of pointed stable curves of type (g,A). The corresponding coarse
moduli scheme Mg,A[n] is projective over Z.
Furthermore by [Ha, Theorem 3.8] a weighted pointed stable curve admits no infinitesimal
automorphisms and its infinitesimal deformation space is unobstructed of dimension 3g −
3 + n. ThenMg,A[n] is a smooth Deligne-Mumford stack of dimension 3g − 3 + n.

Remark 1.2. Since Mg,A[n] is smooth as a Deligne-Mumford stack the coarse moduli
space Mg,A[n] has finite quotient singularities, that is étale locally it is isomorphic to a
quotient of a smooth scheme by a finite group. In particular Mg,A[n] is normal.

Fixed g, n, consider two collections of weight data A[n], B[n] such that ai > bi for any
i = 1, ..., n. Then there exists a birational reduction morphism

ρB[n],A[n] : Mg,A[n] →Mg,B[n]

associating to a curve [C, s1, ..., sn] ∈ Mg,A[n] the curve ρB[n],A[n]([C, s1, ..., sn]) obtained
by collapsing components of C along which KC + b1s1 + ...+ bnsn fails to be ample.
Furthermore, for any g consider a collection of weight data A[n] = (a1, ..., an) and a subset
A[r] := (ai1 , ..., air) ⊂ A such that 2g− 2 + ai1 + ...+ air > 0. Then there exists a forgetful
morphism

πA[n],A[r] : Mg,A[n] →Mg,A[r]

associating to a curve [C, s1, ..., sn] ∈ Mg,A[n] the curve πA[n],A[r]([C, s1, ..., sn]) obtained
by collapsing components of C along which KC + ai1si1 + ...+ airsir fails to be ample.
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4 ALEX MASSARENTI

For the details see [Ha, Section 4].
In the following we will be especially interested in the boundary of Mg,A[n]. The boundary
of Mg,A[n], as for Mg,n, has a stratification whose loci, called strata, parametrize curves of
a certain topological type and with a fixed configuration of the marked points.
We denote by ∆irr the locus in Mg,A[n] parametrizing irreducible nodal curves with n
marked points, and by ∆i,P the locus of curves with a node which divides the curve into a
component of genus i containing the points indexed by P and a component of genus g − i
containing the remaining points.

Kapranov’s blow-up constructions. We follow [Ka]. Let (C, x1, ..., xn) be a genus zero
n-pointed stable curve. The dualizing sheaf ωC of C is invertible, see [Kn]. By [Kn,
Corollaries 1.10 and 1.11] the sheaf ωC(x1+...+xn) is very ample and has n−1 independent
sections. Then it defines an embedding ϕ : C → Pn−2. In particular if C ∼= P1 then
deg(ωC(x1 + ... + xn)) = n − 2, ωC(x1 + ... + xn) ∼= ϕ∗OPn−2(1) ∼= OP1(n − 2), and ϕ(C)
is a degree n − 2 rational normal curve in Pn−2. By [Ka, Lemma 1.4] if (C, x1, ..., xn) is
stable the points pi = ϕ(xi) are in linear general position in Pn−2.
This fact combined with a careful analysis of limits inM0,n of 1-parameter families inM0,n

led M. Kapranov to prove the following theorem:

Theorem 1.3. [Ka, Theorem 0.1] Let p1, ..., pn ∈ Pn−2 be n points in linear general
position, and let V0(p1, ..., pn) be the scheme parametrizing rational normal curves through
p1, ..., pn. Consider V0(p1, ..., pn) as a subscheme of the Hilbert scheme H parametrizing
subschemes of Pn−2. Then

- V0(p1, ..., pn) ∼= M0,n.
- Let V (p1, ..., pn) be the closure of V0(p1, ..., pn) in H. Then V (p1, ..., pn) ∼= M0,n.

Kapranov’s construction allows to translate many issues of M0,n into statements on
linear systems on Pn−3. Consider a general line Li ⊂ Pn−2 through pi. There is a unique
rational normal curve CLi through p1, ..., pn and with tangent direction Li in pi. Let
[C, x1, ..., xn] ∈ M0,n be a stable curve and let Γ ∈ V0(p1, ..., pn) be the corresponding
curve. Since pi ∈ Γ is a smooth point considering the tangent line TpiΓ, with some work
[Ka], we get a morphism

fi : M0,n → Pn−3, [C, x1, ..., xn] 7→ TpiΓ.

Furthermore fi is birational and it defines an isomorphism on M0,n. The birational maps
fj ◦ f−1i

M0,n

Pn−3 Pn−3
fj◦f−1

i

fjfi

are standard Cremona transformations of Pn−3 [Ka, Proposition 2.12]. For any i = 1, ..., n
the class Ψi is the line bundle on M0,n whose fiber on [C, x1, ..., xn] is the tangent line
TpiC. From the previous description we see that the line bundle Ψi induces the birational
morphism fi : M0,n → Pn−3, that is Ψi = f∗i OPn−3(1). In [Ka] Kapranov proved that Ψi

is big and globally generated, and that the birational morphism fi is an iterated blow-up
of the projections from pi of the points p1, ..., p̂i, ...pn and of all strict transforms of the
linear spaces they generate, in order of increasing dimension.
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ON THE AUTOMORPHISMS OF HASSETT’S MODULI SPACES 5

Construction 1.4. [Ka] More precisely, fixed (n− 1)-points p1, ..., pn−1 ∈ Pn−3 in linear
general position:

(1) Blow-up the points p1, ..., pn−2, then the lines 〈pi, pj〉 for i, j = 1, ..., n − 2,..., the
(n− 5)-planes spanned by n− 4 of these points.

(2) Blow-up pn−1, the lines spanned by pairs of points including pn−1 but not pn−2,...,
the (n− 5)-planes spanned by n− 4 of these points including pn−1 but not pn−2.
...

(r) Blow-up the linear spaces spanned by subsets {pn−1, pn−2, ..., pn−r+1} so that the
order of the blow-ups in compatible by the partial order on the subsets given by in-
clusion, the (r−1)-planes spanned by r of these points including pn−1, pn−2, ..., pn−r+1

but not pn−r,..., the (n − 5)-planes spanned by n − 4 of these points including
pn−1, pn−2, ..., pn−r+1 but not pn−r.
...

(n− 3) Blow-up the linear spaces spanned by subsets {pn−1, pn−2, ..., p4}.
The composition of these blow-ups is the morphism fn : M0,n → Pn−3 induced by the psi-
class Ψn. IdentifyingM0,n with V (p1, ..., pn), and fixing a general (n−3)-plane H ⊂ Pn−2,
the morphism fn associates to a curve C ∈ V (p1, ..., pn) the point TpnC ∩H.
We denote by Wr,s[n] the variety obtained at the r-th step once we finish blowing-up the
subspaces spanned by subsets S with |S| 6 s+ r − 2, and by Wr[n] the variety produced
at the r-th step. In particular W1,1[n] = Pn−3 and Wn−3[n] = M0,n.

In [Ha, Section 6.1] Hassett interprets the intermediate steps of Construction 1.4 as
moduli spaces of weighted rational curves. Consider the weight data

Ar,s[n] := (1/(n− r − 1), ..., 1/(n− r − 1)︸ ︷︷ ︸
(n−r−1) times

, s/(n− r − 1), 1, ..., 1︸ ︷︷ ︸
r times

)

for r = 1, ..., n− 3 and s = 1, ..., n− r− 2. Then Wr,s[n] ∼= M0,Ar,s[n], and the Kapranov’s
map fn : M0,n → Pn−3 factorizes as a composition of reduction morphisms

ρAr,s−1[n],Ar,s[n] : M0,Ar,s[n] →M0,Ar,s−1[n], s = 2, ..., n− r − 2,

ρAr,n−r−2[n],Ar+1,1[n] : M0,Ar+1,1[n] →M0,Ar,n−r−2[n].

Remark 1.5. The Hassett’s space MA1,n−3[n], that is Pn−3 blown-up at all the linear
spaces of codimension at least two spanned by subsets of n − 2 points in linear general
position, is the Losev-Manin’s moduli space Ln−2 introduced by A. Losev and Y. Manin
in [LM], see [Ha, Section 6.4]. The space Ln−2 parametrizes (n − 2)-pointed chains of
projective lines (C, x0, x∞, x1, ..., xn−2) where:

- C is a chain of smooth rational curves with two fixed points x0, x∞ on the extremal
components,

- x1, ..., xn−2 are smooth marked points different from x0, x∞ but non necessarily
distinct,

- there is at least one marked point on each component.
By [LM, Theorem 2.2] there exists a smooth, separated, irreducible, proper scheme rep-
resenting this moduli problem. Note that after the choice of two marked points in M0,n

playing the role of x0, x∞ we get a birational morphism M0,n → Ln−2 which is nothing
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but a reduction morphism.
For example L1 is a point parametrizing a P1 with two fixed points and a free point,
L2
∼= P1, and L3 is P2 blown-up at three points in general position, that is a Del Pezzo

surface of degree six, see [Ha, Section 6.4] for further generalizations.

References

[BM1] A. Bruno, M. Mella, On some fibrations of M0,n, arXiv:1105.3293v1 [math.AG].
[BM2] A. Bruno, M. Mella, The automorphisms group of M0,n, J. Eur. Math. Soc. Volume 15, Issue

3, 2013, pp. 949-968.
[DI] I. V. Dolgachev, V. A. Iskovskikh, Finite subgroups of the plane Cremona group, Algebra,

arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I, 443-548, Progr. Math., 269, Birkhäuser
Boston, Inc., Boston, MA, 2009.

[FMN] B. Fantechi, E. Mann, F. Nironi, Smooth toric DM stacks, J. Reine Angew. Math. 648 (2010),
201-244.

[GKM] A. Gibney, S. Keel, I. Morrison, Towards the ample cone of Mg,n, J. Amer. Math. Soc. 15
(2002), 273-294.

[Ha] B. Hassett, Moduli spaces of weighted pointed stable curves, Advances in Mathematics 173 (2003),
Issue 2, 316-352.

[Ka] M. Kapranov, Veronese curves and Grothendieck-Knudsen moduli spacesM0,n, Jour. Alg. Geom.
2 (1993), 239-262.

[Kn] F. Knudsen, The projectivity of the moduli space of stable curves II: the stack Mg,n, Math. Scand.
52 (1983), 161-199.

[LM] A. Losev, Y. Manin, New moduli spaces of pointed curves and pencils of flat connections, Michi-
gan Math. J. Volume 48, Issue 1 (2000), 443-472.

[Ma] A. Massarenti, The Automorphisms group of Mg,n, arXiv:1110.1464v1 [math.AG].
[Mok] S. Mochizuki, Correspondences on hyperbolic curves, J. Pure Applied Algebra, 131 (1998), 227-

244.
[Ro] H.L. Royden, Automorphisms and isometries of Teichmüller spaces, Advances in the theory of

Riemann surfaces Ed. by L. V. Ahlfors, L. Bers, H. M. Farkas, R. C. Gunning, I. Kra, H. E. Rauch,
Annals of Math. Studies No.66 (1971), 369-383.

Alex Massarenti, SISSA, via Bonomea 265, 34136 Trieste, Italy
E-mail address: alex.massarenti@sissa.it

217



From relations in the moduli spaces of curves, to recursions in

Gromov-Witten theory

Nicola Pagani

Abstract

As discovered by Kontsevich in the ninties, each relation in the cohomology of the moduli
space of curves gives rise to recursions for enumerative problems, through Gromov-Witten
theory. In this talk, I will focus on a new genus 2 relation and on its consequences. The
main idea is the following. In low genus and with few marked points, one can write down all
additive generators of the cohomology of the moduli space of stable, n-pointed curves of genus
g, and then intersect all dimension k classes with all codimension k classes, and look for the
kernel of the resulting matrix. As Poincaré duality holds for the moduli space of stable curves,
such kernel consists of relations among cohomology classes. With this idea, and building on
previous results of Bergström and Tavakol, we find a new relation in M2,6. I will try to
emphasize the computer-assisted and algorithmic aspects involved in this work.

Keywords
moduli spaces, tautological ring, Gromov-Witten
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Abstract

The problem of parametrizing approximately algebraic curves and surfaces is an active
research field, with many implications in practical applications. The problem can be treated
locally or globally. We formally state the problem, in its global version for the case of algebraic
curves (planar or spatial), and we report on some algorithms approaching it, as well as on the
associated error distance analysis.

Keywords
Rational Curve, Approximate Parametrization, Hausdorff distance

1 Introduction

Let us say that, within the development of some algebraic computation, probably coming from an
applied problem in geometric modeling or in computer aided geometric design, as for instance the
intersection of two implicitly given algebraic surfaces, we get an algebraic (planar or spatial) curve
D that, because of the nature of the problem we are treating, is expected to be rational. However,
because of imprecisions (e.g. in the input data or in the arithmetic used in the process), the curve
D has positive genus, and hence cannot be parametrized with rational functions. The approximate
parametrization problem asks for the computation of an algebraic curve D of genus zero, being in
the vicinity of D, as well as a rational parametrization of the curve D; since we are dealing with
sets, the distance (i.e. the vicinity) between D and D is measured using the Hausdorff distance
associated to the usual Euclidean distance in R2 or R3; see [1]. We report here on the main ideas
developed in [6],[7], [9]. Additional work for this problem can be found in [8], [10], [11]; for the
local treatment of the problem, one may check [3], [2], [4], [5].

In the following, we focus on the planar case treatment, developed in [6]. For the space case
treatment, we refer to [9]. For this purpose we needed to introduce some new concepts as ε-
points, ε-genus, etc, where ε > 0 is given. Intuitively speaking, the ε-singularities are points that,
although not singular, are almost singular. Additionally, we introduce the notion of ε-multiplicity.
The main difficulty that appears is that, in general, one has more ε-points than expected. To
overtake this difficulty we pass, via an equivalence relation, from the ε-locus (that is, the union
of the ε-singularities and the exact singularities) to a quotient set with finitely many equivalence
classes that we call clusters. These clusters play now the role of the classical singularities. We
distinguish two types of clusters: those containing exact non-ordinary singularities and the others.
To each cluster we associate a representative and a multiplicity as follows:
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• If the cluster contains, at least, one exact non-ordinary singularity we assign as multiplicity
the maximum exact multiplicity that the non-ordinary singularities provide through their
blowing up, and as representative a non-ordinary singularity in the cluster for which the
maximum is achieved the maximum; we store the tuple of singularities generated through
the blowing up of the representative.

• If the cluster does not contain exact non-ordinary singularities, we assign as multiplicity the
maximum of the ε-multiplicities of their elements, and as representative an element of the
cluster where maximum is achieved.

Notation. We use the following terminology. ‖ · ‖ and ‖ · ‖2 denote the polynomial ∞–norm and
the usual unitary norm in C2, respectively. | · | denotes the module in the field C of complex

numbers. The partial derivatives of a polynomial g ∈ C[x, y] are denoted by g
−→v := ∂i+jg

∂ix∂jy where
−→v = (i, j) ∈ N2; we assume that g

−→
0 = g. Moreover, for −→v = (i, j) ∈ N2, |−→v |∗ = i + j. Also,−→e1 = (1, 0) and −→e2 = (0, 1). In addition, let D ⊂ C2 be an irreducible plane curve over C, and let

f(x, y) be its defining polynomial. Furthermore, let ε ∈ R be such that 0 < ε < 1.

2 ε-points

The basic ingredient of our reasoning is the notion of ε-point; the concept of ε–point of an alge-
braic variety was introduced by the authors (see [6], [7], [8]) as a generalization of the notion of
approximate root of a univariate polynomial. Let P ∈ C2, we say that P is an ε–(affine) point of
D if |f(P )| < ε‖f‖. Moreover, if P is an ε–point of D, we define the ε-multiplicity of P on D (we
denote it by multε(P,D)) as the smallest natural number r ∈ N satisfying that

(1) ∀−→v ∈ N2, such that 0 ≤ |−→v |∗ ≤ r − 1, it holds that |f−→v (P )| < ε‖f‖,

(2) ∃−→v ∈ N2, with |−→v |∗ = r, such that |f−→v (P )| ≥ ε‖f‖.

In this situation, we say that P is an ε–(affine) simple point of D if multε(P,D) = 1; otherwise,
P is an ε–(affine) singularity of D. Furthermore, we say that P is a k-pure ε–singularity of D, with
k ∈ {1, 2}, if multε(P,D) > 1 and |fmultε(P,D)·−→ek(P )| ≥ ε‖f‖. In addition, we say that P is an
ε–(affine) ramification point of D if multε(P,D) = 1, and either |f−→e1(P )| < ε‖f‖ or |f−→e2(P )| < ε‖f‖.

Finally, we introduce the weight of an ε-singularity. This will be used for defining the ε-genus.
Let P be an ε-singularity of D and r = multε(P,D). If P is k–pure, with k ∈ {1, 2}, we define the
k-weight of P as

weightk(P ) = max
i=0,...,r−1





∣∣∣∣∣
r! · f i·−→ek(P )

i! · fr·−→ek(P )

∣∣∣∣∣

1
r−i


.

If P is pure in both directions, we define weight of P , as weight(P ) = max{weight1(P ),weight2((P )}
and as the corresponding k-weight otherwise.

3 ε-rationality

Once we have defined the ε-singularities and their ε-multiplicities, we introduce the notion of ε-
genus. This seems easy, since the genus can be introduced by means of multiplicities and we
already have the notion of ε-multiplicity. However, the main problem is that there are more ε-
singularities than expected. To face this problem, we introduce an equivalence relation over the
set of ε-singularities and the equivalence classes would play the role of the ε-singularities in the
ε-genus formula. More precisely, let S be a finite set of ε-singularities of D. In addition, let N be
the finite set (maybe empty) of exact non-ordinary singularities of D. We replace S by S ∪ N .
Also, for P ∈ N we will refer to the tuple of neighboring multiplicities of P , and we will denote it by
NeighMult(P ), as the tuple of all exact multiplicities of P and the neighboring points generated
through its blowing up. For P ∈ S we define the radius of P , and we denote it by radius(P ), as

radius(P ) =

{
Rout(weight(P )) if P is pure

0 otherwise
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where Rout is Sasaki-Terui out rational function, namely,

Rout(x) =
1

2
− x(1− 9x)

2(1 + 3x)
− 32x2

(1 + 3x)3
.

Now, we introduce the following equivalence relation in S. Let P,Q ∈ S, then

P RQ⇐⇒
{
P R∗Q
or there exist P1, . . . , Pn ∈ S such that P R∗ P1, . . . , PnR∗Q

where
P R∗Q⇐⇒ ‖P −Q‖2+ | radius(P )− radius(Q) |< Rout(ε).

We define the (ε-singular) clusters of D as the equivalence classes in S/R. In addition, we distinguish
two type of clusters: those whose intersection with N is empty and the others. Let Cord be the set
of all clusters of the first type, and let Cnon be the set of all clusters of the second type. So, S/R
decomposes as

S/R = Cord ∪ Cnon.

In this situation, if Cord = {Clusterri(Pi)}i=1,...,s1 and Cnon = {ClusterTi(Mi)}i=1,...,s2 , with
Ti = (ki,1, . . . , ki,`i), we define the ε-genus of D as

ε-genus(D) =
(deg(D)− 1)(deg(D)− 2)

2
−

s1∑

i=1

ri(ri − 1)

2
−

s2∑

i=1

`i∑

j=1

ki,j(ki,j − 1)

2
.

In addition, we say that D is ε-rational if ε-genus(D) = 0.

In [6], for the application of the planar approximate parametrization algorithm, we imposed
among other conditions that D has proper degree and that D is ε-irreducible over C. These
two notions depend on ε. More precisely, D has proper degree d > 0 if the total degree of f
is `, and ∃ −→v ∈ N2, with |−→v |∗ = `, such that |f−→v | > ε‖f‖. Moreover, we say that D is ε-
irreducible if f cannot be expressed as f(x, y) = g(x, y)h(x, y) + E(x, y) where h, g, E ∈ F[x, y]
and ‖E(x, y)‖ < ε‖f(x, y)‖. Nevertheless we observe that taking, if necessary, a smaller ε we
can avoid the properness requirement on the degree and we can change the ε-irreducibility of D
by irreducibility over C. Thus, we will ask the planar curve D to satisfy the following general
conditions:

1. D is an affine real plane algebraic curve over C

2. D is irreducible over C.

3. D∞ consists in d different points at infinity, where d = deg(D), note that this, in particular,
implies that all points at infinity are regular, and the line at infinity is not tangent to D.

4. (1 : 0 : 0), (0 : 1 : 0) 6∈ Dh (where Dh denotes the homogenization of D).

Let us mention that the condition (1 : 0 : 0), (0 : 1 : 0) 6∈ Dh can always be achieved by performing
a suitable affine orthogonal linear change of coordinates.

In this situation, we have the following algorithm.

Algorithm: Given a tolerance 0 < ε < 1, and D satisfying the conditions imposed above, the
algorithm decides whether D is ε-rational and, in the affirmative case, it computes a rational
parametrization P(t) of a curve D whose real part is at finite Hausdorff distance of the real part of
D and such that deg(D) = deg(D). Let f be defining polynomial of D and F its homogenization.

(1) Let d = deg(D). If d = 1 output a polynomial parametrization of the line D. If d = 2 apply
algorithm from [7] to D.

(2) Compute Cord = {Clusterri(Qi)}i=1,...,s1 and Cnon = {ClusterTi(Mi)}i=1,...,s2 of D; say Qi =
(qi,1 : qi,2 : 1), Mi := (mi,1 : mi,2 : 1) and Ti := (ki,1, . . . , ki,`i).

(3) If ε-genus(D) 6= 0 RETURN “D is not ε-rational”. If s = 1 one may apply the algorithm from
[7] for the monomial case.
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(4) Determine the linear subsystem Ad−2 of adjoints to D, of degree d − 2, that has the non-
ordinary singularities Mi, for i ∈ {1, . . . , s2}, as base points. Let Hd−2 be the intersection of
Ad−2 with the linear system of degree (d− 2) given by the divisor

∑s
i=1(ri − 1)Qi.

(5) Compute (d−3) ε–ramification points {Pj}1≤j≤d−3 of D; if there are not enough ε-ramification
points, complete with simple ε-points. Take the points over R, or as conjugate complex points.
After each point computation check that it is not in the cluster of the others (including the
clusters in Cord ∪ Cnon); if this fails take a new one. Say Pi = (pi,1 : pi,2 : 1).

(6) Determine the linear subsystemH ∗d−2 ofHd−2 given by the divisor
∑d−3
i=1 Pi. LetH∗(t, x, y, z) =

H1(x, y, z) + tH2(x, y, z) be its defining polynomial.

(7) If [gcd(F (x, y, 0), H1(x, y, 0)) 6= 1] and [gcd(F (x, y, 0), H2(x, y, 0)) 6= 1] replace H2 by H2 +
ρ1x

d−2+ρ2y
d−2, where ρ1, ρ2 are real and strictly smaller than ε. Say that gcd(F (x, y, 0), H2(x, y, 0)) =

1; similarly in the other case.

(8) S1(x, t) = Resy(H∗(x, y, 1), f) and S2(y, t) = Resx(H∗(x, y, 1), f).

(9) A1 =
∏s1
i=1(x− qi,1)ri(ri−1)

∏s2
i=1(x−mi,1)

∑`i
j=1 ki,j(ki,j−1)∏d−3

i=1 (x− pi,1),

A2 =
∏s1
i=1(y − qi,2)ri(ri−1)

∏s2
i=1(y −mi,2)

∑`i
j=1 ki,j(ki,j−1)∏d−3

i=1 (y − pi,2).

(10) For i = 1, 2 compute the quotient Bi of Si by Ai w.r.t. either x or y.

(11) If the content of B1 w.r.t x or the content of B2 w.r.t. y does depend on t, RETURN
“degenerate case” (see [6]).

(12) Determine the root p1(t) of B1, as a polynomial in x, and the root p2(t) of B2, as a polynomial
in y.

(12) RETURN P(t) = (p1(t), p2(t)).

In the following Example we illustrate the Algorithm.

Example 3.1. Let ε = 1
100 and D the curve of proper degree 5 defined by (see Fig.3.1):

f(x, y) =
8578750

617673396283947
y3x2− 299200

7625597484987
yx3− 1870000

617673396283947
y2x2+

56359375

50031545098999707
y4x

− 11687500

150094635296999121
y3x+

17276000

617673396283947
x3y2 − 6055664500

50031545098999707
x4y − 47872

282429536481
x4

+
1562500

50031545098999707
y5 +

3125000

50031545098999707
x5.

First we compute the ε-singularities of D:

{Q1 = (0.008215206627− 0.003422196305I,−0.1256431531 + 0.01292576399I),
Q2 = (0.008215206627 + 0.003422196305I,−0.1256431531− 0.01292576399I),
Q3 = (0, 0), Q4 = (0.003676621613,−0.05844533731), Q5 = (0.02528071675,−0.2879266871)}.

The singularities {Q1, Q2} have ε-multiplicity 3, and {Q3, Q4, Q5} have ε-multiplicity 4. Moreover,
the cluster decomposition of the singular locus consists in an unique cluster taking the maximum
ε-multiplicity 4: Cluster4(Q3) = {Q1, Q2, Q3, Q4, Q5}. And therefore D is ε-rational since it is
monomial. Finally, the algorithm outputs the parametrization:

P(t) =

(
748(25t+ 324)3

375(t− 2)(12500t4 + 475875t3 + 6510780t2 + 24216408t− 12500)
,

t
748(25t+ 324)3

375(t− 2)(12500t4 + 475875t3 + 6510780 ∗ t2 + 24216408t− 12500)

)
.

See the following figure to compare the input and the output curves:

Acknowledgments: This work was developed, and partially supported, under the research project
MTM2011-25816-C02-01. All authors belong to the Research Group ASYNACS (Ref. CCEE2011/R34).

222



Figure 1: Input (in dots) and output curve.
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Abstract

Parametrization of algebraic curves and surfaces is a fundamental topic in CAGD (inter-
sections; offsets and conchoids; etc.) There are many results on rational parametrization, in
particular in the curve case, but the class of such objects is relatively small. If we allow root
extraction, the class of parametrizable objetcs is greatly enlarged (for example, elliptic curves
can be parametrized with one square root). We will describe the basics and the state of the
art of the problem of parametrization of curves and surfaces by radicals.

Keywords
Radical parametrization, parametrization of curves, parametrization of surfaces

1 Introduction

It is well known that the only algebraic curves that are rationally parametrizable are those of
genus zero, and there are algorithms for that purpose (Sendra et al., 2008). However, in many
applications, this is a strong limitation because either the curves appearing in the process are not
rational (i.e. genus zero curves) or the algebraic manipulation of the geometric object does not
preserve the genus; this happens, for instance, when applying offsetting constructions (Arrondo
et al., 1997) or performing conchoidal transformations (Sendra and Sendra, 2010).

On the other hand, allowing radicals rather than just rational functions greatly enlarges the
class of parametrizable functions. For example, one class of curves which are clearly parametrizable
by radicals is that of hyperelliptic curves. Every such curve can be written as y2 = P (x) for some
polynomial P (x), and we can quickly write the parametrization x = t, y =

√
P (t) where the root

is meant to be taking in a strictly algebraic sense, that is, as an element of an algebraic extension
of the field F(t) where F is the coefficient field of the curve. Essentially, a radical parametrization
is given by rational functions whose numerators and denominators are radicals expressions of
polynomials.

The roots of univariate polynomials of degree ≤ 4 can be written in terms of radicals. Therefore,
curves which can be expressed as f(x, y) = 0 where one of the variables occurs with degree ≤ 4
can also be parametrized by radicals. In relation to this, the minimum degree of a map from the
curve to P1 is called the gonality of the curve. Hyperelliptic curves are precisely those of gonality
two and, as in the example above, can be parametrized using one square root. It is thus interesting
to characterize the curves of gonality three (trigonal) and four (trigonal), and further to produce
algorithms that detect these situations and compute a radical parametrization.

In relation to this, the following facts are relevant. In Zariski (1926), Zariski proved that the
general complex projective curve of genus g > 6 is not parametrizable by radicals. Moreover,
as remarked in Pirola and Schlesinger (2005), Zariski’s result is sharp. Indeed, a result within
Brill-Noether theory (see Brill and Noether (1873), or (Arbarello et al., 1985, Chapter V) for a
more modern account) states that a curve of genus g has a linear system of dimension 1 and degree
d g2 + 1e (Arbarello et al., 1985, p. 206), thus a map of that degree to P1. The previous expression
is thus an upper bound for the gonality in terms of the genus. It follows that for g = 3, 4 there
exists generically a 3 : 1 map whose inversion would provide a radical parametrization with cubic
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roots, and for g = 5, 6 the inversion of the existing 4 : 1 would provide a radical parametrization
with quartic roots. These are instances of trigonal and tetragonal curves.

We do not wish to enter the thorny realm of evaluation of radical functions, so we consider them
as elements in an certain algebraic field extension, not as functions. For simplicity, let us restrict
the discussion to the situations where the coefficient field is algebraically closed of characteristic
zero.

2 The trigonal case

An algorithm for the trigonal case is described in Schicho and Sevilla (2012). The solution is based
on the Lie algebra method introduced in de Graaf et al. (2006) (see also de Graaf et al. (2009)).
There Lie algebra computations (which mostly amount to linear algebra) are used to decide if a
certain algebraic variety associated to the input curve is a rational normal scroll, which is the
case precisely when the curve is trigonal. Further, one can compute an isomorphism between that
variety and the scroll when it exists.

Let C be an non-hyperelliptic algebraic curve of genus g ≥ 4, so that it is isomorphic to its
image by the canonical map ϕ:C → Pg−1. In Enriques (1919) and Babbage (1939) it is proven
that ϕ(C) is the intersection of the quadrics that contain it, except when C is trigonal (that is, it
has a g13) or isomorphic to a plane quintic (g = 6). In those cases, the corresponding varieties are
minimal degree surfaces, see (Griffiths and Harris, 1978, p. 522 and onwards).

From this situation we exclude the curves with genus lower than 3 since they are hyperelliptic,
thus they have a g12 which can be made into a g13 by adding a base point; the problem is then to
find a point in the curve over the field of definition. Also, if the curve is non-hyperelliptic of genus
3, it is isomorphic to its canonical image which is a quartic in P2, and the system of lines through
any point of the curve cuts out a g13 .

The following theorem summarizes the classification of canonical curves according to the inter-
section of the quadric hypersurfaces that contain them.

Theorem 1 (Griffiths and Harris (1978, p. 535)) For any canonical curve C ⊂ Pg−1 over
an algebraically closed field, either

1. C is entirely cut out by quadric hypersurfaces; or

2. C is trigonal, in which case the intersection of all quadrics containing C is isomorphic to the
rational normal scroll swept out by the trichords of C; or

3. C is isomorphic to a plane quintic, in which case the intersection of the quadrics containing
C is isomorphic to the Veronese surface in P5, swept out by the conic curves through five
coplanar points of C.

There exist efficient algorithms for the computation of the canonical map, determination of
hyperellipticity, and calculation of the space of forms of a given degree containing a curve, for
example in Magma (Bosma et al., 1997) and at least partially in Maple. Thus the problem lies in
recognizing which of the previous types is that of the intersection of the quadrics containing C.

Definition 2 Every finite-dimensional Lie algebra L can be written as a semidirect sum of two
parts called a solvable part and a semisimple part. The latter is called a Levi subalgebra of L,
and it is unique up to conjugation, so we will speak of “the” Levi subalgebra of L and denote it as
LSA(L). For a variety X, we will denote LSA(L(X)) simply by LSA(X).

The Lie algebra of a curve of genus 2 or higher is zero since its automorphism group is finite.
The rest of the cases that arise in Theorem 1 are studied in the next result.

Theorem 3 (Oda (1988, Section 3.4)) Let k be an algebraically closed field of characteristic
zero. As above, let Sm,n be the the rational normal scroll with parameters m,n, and let V be the
image of the Veronese map P2 → P5.

1. LSA(Sm,n) ∼= sl2 if m 6= n.

2. LSA(Sm,m) ∼= sl2 + sl2 (a direct sum of two Lie algebras)

3. LSA(V ) ∼= sl3.
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Therefore, just by looking at the dimension of the Levi subalgebra we can discard the two cases
where the curve is not trigonal. In other words, we can recognize a trigonal curve by the dimension
of its Levi subalgebra.

Corollary 4 Let k be any field of characteristic zero, let C be a canonical curve and X be the
intersection of the quadrics that contain it. Then one of the following occurs:

• If dimLSA(X) = 0 then X = C and C is not trigonal.

• If dimLSA(X) = 3 then X is a twist of Sm,n with m 6= n and C is trigonal.

• If dimLSA(X) = 6 then X is a twist of Sm,m and C is trigonal.

• If dimLSA(X) = 8 then X ∼= V and C is not trigonal.

3 The tetragonal case and higher gonality

For the cases of genus 5 and 6, a solution was presented in Harrison (2013) which involves the
study of minimal free resolutions of certain geometric constructions. Unfortunately there has been
no extension to tetragonal curves of arbitrary genus.

Very recently, in Schicho et al. (2013) the authors have published a deterministic algorithm that
calculates the gonality of a given curve and a map to P1 that realizes the gonality. The methods
they use are based on syzygyes, and are quite limited in practical computations. On the other
hand, in (Schicho et al., 2013, Theorem 1.3) an algorithm for the case of gonality up to 4 for curves
in characteristic 6= 2, 3.

Although these results allow us to find lowest degree maps, their invertibility by radicals is
generally not possible outside the cases discussed above.

4 Parametrization by lines and adjoints

A more direct approach for particular cases is shown in Sendra and Sevilla (2011). First, it is
established that the construction of offsets and conchoids, two common constructions in CAGD, is
closed under parametrizability by radicals. That is, an offset or conchoid constructed over a curve
that is parametrizable by radicals will also be a curve of such type. Another class of curves that
can be quickly parametrized by radicals are those of degree d and posessing a point of multiplicity
d− r for some r ≤ 4; in this situation one can produce the parametrization by considering a pencil
of lines through the point. Finally, by employing adjoint curves as it is done in the rational case,
it is possible to parametrize by radicals curves of genus up to 4.

The caveat is that this method produces g : 1 maps where g is the genus. This means that
trigonal curves of genus 4 are parametrized by quartic roots, although they can be parametrized
by cubic roots; analogously, for curves of genus 5 or 6 a quintic or sextic polynomial in one variable
needs to be resolved by radicals in order to produce a parametrization, whereas we know that they
can be parametrized by quartic roots.

In any case, these methods provide efficient radical parametrizations for curves that are of
practical interest.

5 Radical parametrization of surfaces

It is possible to exploit the results outlined in the previous section for the case of surfaces. As in
the curve case, only a narrow class of algebraic surfaces can be parametrized rationally. Namely,
the two genera must be zero. What follows is taken from Sendra and Sevilla (2013).

However, by using resolution of univariate polynomials by radicals, it is clear that one can
parametrize several new classes of surfaces by radicals. For example, if a surface is given as the
zeros of F (x.y.z) where the degree of any of the variables is less or equal than 4, we can parametrize
by solving F as a univariate polynomial.

In a more geometric fashion, a surface of degree d that posess a point of multiplicity d− r for
some r ≤ 4 can be parametrized by the pencil of lines through the point. Therefore, every surface
of degree 5 is parametrizable by radicals, and so is every singular surface of degree 6.
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If we regard F (x, y, z) as a polynomial in x, y with coefficients in F(z), we can use the parametriza-
tion by adjoints methods of the previous section. The caveat here is that, if the relevant construc-
tion employs a point in the curve case (not problematic since our coefficient field is algebraically
closed), in the surface case it is necessary that there exist such a point satisfying that its coordi-
nates are radical functions. Otherwise, the parametrization we obtain would be radical in x, y but
not in z. This produces several cases depending on the genus of F (x, y)(z) and the existance of
points with the property just mentioned.

Finally, as in the curve case, certain geometric constructions are proven to be closed under
parametrizability by radicals.
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Abstract

Let C be a genus 3 hyperelliptic curve with an elliptic involution. Then C has equation
y2 = x8 + ax6 + bx4 + cx2 + 1 for constants a, b, c. Associated to these curves are dihedral
invariants s2, s3, s4 which uniquely determine the isomorphism classes of these curves. In this
paper, we aim to classify the q-Weierstrass points of these curves in terms of such invariants.

Keywords
Weierstrass points, q-Weierstrass points, genus 3 hyperelliptic curves, invariants

1 Introduction

The Riemann-Roch theorem shows that every point on a genus g ≥ 2 curve has a non-constant
function associated to it which has a pole of order less than or equal to g + 1 and no other poles.
A Weierstrass point is a point such that there is a non-constant function which has a low order
pole and no other poles. By “low order” we mean a pole of order at most g. A q-Weierstrass
point, for any q ∈ N, is a point which has a higher than expected order of vanishing in a space of
holomorphic q-differentials.

Hurwitz showed that all Weierstrass points on a given curve are zeroes of a certain high order
differential form. The Weierstrass weight of a point is the order of the zero of this form at the
point. Since this differential form has degree g3 − g then there are only finitely many Weierstrass
points.

In a similar manner, the q-Weierstrass points are zeroes of a certain high order differential
form. The Weierstrass q-weight is the order of the zero, and as above, there are finitely many
q-Weierstrass points.

Let C be a genus 3 hyperelliptic curve with an elliptic involution. Then, C has equation

y2 = x8 + ax6 + bx4 + cx2 + 1.

The dihedral invariants s2, s3, s4 as defined in [5] uniquely determine the isomorphism class of such
curves.

The goal of this paper is to classify all Weierstrass and q-Weierstrass points and their weights
in terms of such invariants.

2 Genus 3 hyperelliptic fields with elliptic involutions

Let K be a genus 3 hyperelliptic field. Then K has exactly one genus 0 subfield of degree 2, call
it k(X). It is the fixed field of the hyperelliptic involution ω0 in Aut (K). Thus, ω0 is central
in Aut (K), where Aut (K) denotes the group Aut (K/k). It induces a subgroup of Aut (k(X))
which is naturally isomorphic to Aut(K) := Aut (K)/〈ω0〉. The latter is called the reduced
automorphism group of K.
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Definition 1. An elliptic involution (or non-hyperelliptic) of G = Aut (K) is an involution
different from ω0. Thus, the elliptic involutions of G are in 1-1 correspondence with the non-
hyperelliptic subfields of K of degree 2.

Let ε be an non-hyperelliptic involution in Ḡ. We can choose the generator X of Fix(ω0) such
that ε(X) = −X. Then K = k(X,Y ) where X,Y satisfy equation

Y 2 = (X2 − α2
1)(X2 − α2

2)(X2 − α2
3)(X2 − α2

4) (1)

for some αi ∈ k, i = 1, . . . , 4. Denote by

s1 =−
(
α2
1 + α2

2 + α2
3 + α2

4

)

s2 = (α1α2)2 + (α1α3)2 + (α1α4)2 + (α2α3)2 + (α2α4)2 + (α3α4)2

s3 =− (α1 α2 α3)2 − (α4 α1 α2)2 − (α4 α3 α1)2 − (α4 α3 α2)2

s4 =− (α1α2α3α4)
2

(2)

Then, we have
Y 2 = X8 + s1X

6 + s2X
4 + s3X

2 + s4

with s1, s2, s3, s4 ∈ k, s4 6= 0. Further E1 = k(X2, Y ) and C = k(X2, Y X) are the two subfields
corresponding to ε of genus 1 and 2 respectively.

Preserving the condition ε(X) = −X we can further modify X such that s4 = 1. Then, we
have the following:

The following Lemma is proven in [5].

Lemma 1. Every genus 3 hyperelliptic curve X , defined over a field k, which has an non-
hyperelliptic involution has equation

Y 2 = X8 + aX6 + bX4 + cX2 + 1 (3)

for some a, b, c ∈ k3, where the polynomial on the right has non-zero discriminant.

The above conditions determine X up to coordinate change by the group 〈τ1, τ2〉 where

τ1 : X → ζ8X, and τ2 : X → 1

X
,

and ζ8 is a primitive 8-th root of unity in k. Hence,

τ1 : (a, b, c)→ (ζ68a, ζ
4
8b, ζ

2c),

and
τ2 : (a, b, c)→ (c, b, a).

Then, |τ1| = 4 and |τ2| = 2. The group generated by τ1 and τ2 is the dihedral group of order 8.
Invariants of this action are

s2 = a c,

s3 = (a2 + c2) b,

s4 = a4 + c4,

(4)

since

τ1(a4 + c4) = (ζ68a)4 + (ζ28c)
4 = a4 + c4

τ1
(
(a2 + c2)b

)
=
(
ζ48a

2 + ζ48c
2
)
· (ζ48b) = (a2 + c2)b

τ1(ac) = ζ68a · ζ28c = ac

Since they are symmetric in a and c, then they are obviously invariant under τ2. Notice that
s2, s3, s4 are homogenous polynomials of degree 2, 3, and 4 respectively. The subscript i represents
the degree of the polynomial si.
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Since the above transformations are automorphisms of the projective line P1(k) then the SL2(k)
invariants must be expressed in terms of s4, s3, and s2. In these parameters, the discriminant of
the octavic polynomial on the right hand side of Eq. (3) equals − 256

(s4+2s22)
4 ∆2, where

∆ = 132s2
4s4 − 18s4

2s2s3 − 72s4s2
3s3 − s4s2

2s3
2 + 80s2s3

2s4 − 576s3s2
2s4

− 256s4
2 + 768s4s2

3 − 1024s4s2
2 + 256s2

2s3
2 − 576s2

4s3 + 768s2
5 + 24s2

6

− 16s3
4 − 1024s2

4 + 128s3
2s4 + 192s4

2s2 + 114s4
2s2

2 + 4s4
2s2

3 − 144s4
2s3

+ 16s4s2
5 − 72s2

5s3 − 2s2
4s3

2 + 160s2
3s3

2 + 4s3
3s4 + 8s3

3s2
2 + 27s4

3 + 16s2
7

(5)

The map
(a, b, c) 7→ (s2, s3, s4)

is a branched Galois covering with group D4 of the set

{(s2, s3, s4) ∈ k3 : ∆(s2,s3,s4) 6= 0}
by the corresponding open subset of a, b, c-space. In any case, it is true that if a, b, c and a′, b′, c′

have the same s2, s3, s4-invariants then they are conjugate under 〈τ1, τ2〉.
The case when s3 = 0 must be treated separately. We have two sub cases a2 + c2 = 0 or b = 0.

Then we define new invariants as follows:

p(X3) =





w = b2 if a = c = 0,

(s2, w, s4) if a2 + c2 = 0 and b 6= 0,

(s2, s3, s4) otherwise.

(6)

We denote by Mb
3 the locus of bielliptic curves in M3 and by H3 the hyperelliptic locus. The

following theorem is proved in [5].

Theorem 1. Let X be a curve in S =Mb
3 ∩H3. Then, one of the following occurs:

i) Aut (X )∼=Z3
2 if and only if s4 − 2s22 = 0

ii) Aut (X )∼=Z2 ×D8 if and only if s2 = s4 = 0
iii) Aut (X )∼=Z2 × Z4 if and only if s4 + 2s22 = 0 and s3 = 0.
iv) Aut (X )∼=D12 if and only if

s3 =
1

75
(9 s2 − 224) (s2 − 196)

s4 = − 9

125
s2

3 +
1962

125
s2

2 − 840448

1125
s2 +

9834496

1125
.

(7)

3 Weierstrass and q-Weierstrass points of curves

3.1 Weierstrass points

Following the notation of [6], let k be an algebraically closed field, and let C be a non-singular
projective curve over k of genus g. Let k(C) be the associated function field. For any divisor D
on C, let L(D) = {f ∈ k(C) : (f) + D ≥ 0} ∪ {0}. Let `(D) = dimk(L(D)). By Riemann-Roch,
for any canonical divisor K, we have

`(D)− `(K −D) = deg(D) + 1− g.
Since deg(K) = 2g − 2, if deg(D) ≥ 2g − 1, we have

`(D) = deg(D) + 1− g.
Let P be a degree 1 point on C. Consider the chain of vector spaces

L(0) ⊆ L(P ) ⊆ L(2P ) ⊆ L(3P ) ⊆ · · · ⊆ L ((2g − 1)P ) .

Since L(0) = k, we have `(0) = 1. And ` ((2g − 1)P ) = g. We obtain the corresponding sequence

`(0), `(P ), `(2P ), `(3P ), . . . , ` ((2g − 1)P ) .

It is straightforward to show that 0 ≤ `(nP )−`((n−1)P ) ≤ 1 for all n ∈ N. If `(nP ) = `((n−1)P ),
then we call n a gap number. For any point P , there are exactly g gap numbers. If the gap numbers
are 1, 2, . . . , g, then P is an ordinary point. Otherwise, we call P a Weierstrass point. (Equivalently,
we call P a Weierstrass point if `(gP ) > 1.)
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3.2 q-Weierstrass points

Using differentials, we can define q-Weierstrass points as in [2] and [1]. For any q ∈ N, let
H0(C, (Ω1)q) be the C-vector space of holomorphic q-differentials on C. Let s = dim(H0(C(Ω1)q)).

As before, let P be a degree 1 point on C. Take a basis {ψ1, . . . , ψs} of H0(C, (Ω1)q) such that
ordP (ψ1) < ordP (ψ2) < · · · < ordP (ψs). For i = 1, . . . , s, let ni = ordP (ψi) + 1. The sequence of
natural numbers G(q)(P ) = {n1, n2, . . . , ns} is called the q-gap sequence of P . With such a gap
sequence, we can calculate the q-weight of P , which is

w(q)(P ) =

s∑

i=1

(ni − i).

We call the point P a q-Weierstrass point if w(q)(P ) > 0, and we let Wq(C) denote the set of all
q-Weierstrass points on C. In particular, W1(C), the set of 1-Weierstrass points on C, is exactly
the set of Weierstrass points as defined above in terms of Riemann-Roch.

Given a basis {ψ1, . . . , ψs} of holomorphic differentials, where ψi = fi(x)dx for a holomorphic
function fi of a local coordinate x for each i, the Wronskian is the determinant of the following
s× s matrix:

W =

∣∣∣∣∣∣∣∣∣

f1(x) f2(x) · · · fs(x)
f ′1(x) f ′2(x) · · · f ′s(x)

...
...

. . .
...

f
(s−1)
1 (x) f

(s−1)
2 (x) · · · f

(s−1)
s (x)

∣∣∣∣∣∣∣∣∣
.

The Wronskian form is Ωq = W (dx)m, for

m = q + (q + 1) + (q + 2) + · · ·+ (q + s− 1)
= (s/2)(2q − 1 + s).

Suppose P is a zero of order n for the form Ωq. Then P is a q-Weierstrass point with q-weight
n. Since the Wronskian form is a holomorphic m-differential, div(Ωq) is effective. Thus, the q-
Weierstrass points are the support of div(Ωq), and the sum of the q-weights of the q-Weierstrass
points is the degree of div(Ωq), which is m(2g−2) = s(2q−1 + s)(g−1). In particular, this means
there are a finite number of q-Weierstrass points.

4 Computations with genus g = 3

Let C be a hyperelliptic curve of genus g = 3 with non-hyperelliptic, as in Eq. (3). As in Eq. (1),
let {±α1,±α2,±α3,±α4} denote the 8 distinct roots of f(x), and denote the corresponding rami-
fication points on C by R±i = (±αi, 0). Throughout this section, let w ∈ C denote any non-root of
f(x), and let Pw1 and Pw2 denote the two (distinct) points above w. And let P∞1 and P∞2 denote
the two points over ∞ in the non-singular model of C.

Consider H0(C, (Ω1)q), the space of holomorphic q-differentials on C. For a curve of genus g,
by Riemann-Roch one has that dim(H0(C, (Ω1)1)) = g and, for q ≥ 2,

dim(H0(C, (Ω1)q)) = (g − 1)(2q − 1).

In particular, for g = 3, when q ≥ 2, dim(H0(C, (Ω1)q)) = (4q − 2).

4.1 1-Weierstrass points

For q = 1, a basis of holomorphic 1-differentials is
{

1
ydx,

(x−β)
y dx, (x−β)

2

y dx
}

for any constant

β ∈ C. Using β = ±αi, the 1-gap sequence of each branch point R±i is {1, 3, 5}, so the branch
points have 1-weight 3. Using β = w, the finite non-branch points Pwi have 1-gap sequence {1, 2, 3},
so 1-weight 0. And using any value of β, one finds the points at infinity P∞i have 1-gap sequence
{1, 2, 3}, so 1-weight 0. Hence, the 1-Weierstrass points are exactly the ordinary Weierstrass points.

The Wronskian form for q = 1 is Ω1 = W (dx)6, where W = 2/y3. The associated divisor is

div(Ω1) = div(2/y3) + div(dx6)

= −3

(
4∑

i=1

R±i − 4(P∞1 + P∞2 )

)
+ 6

(
4∑

i=1

R±i − 2(P∞1 + P∞2 )

)
= 3

(
4∑

i=1

R±i

)
,

again showing that the branch points are the only 1-Weierstrass points, each with 1-weight equal
to 3.
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4.2 2-Weierstrass points

For any q ≥ 2, a basis for H0(C, (Ω1)q) is

{
(x− β)i

yq
dxq : 0 ≤ i ≤ 2q

}
∪
{

(x− β)i(y − f4(x))

yq
: 0 ≤ i ≤ 2q − 4

}

for any constant β and any polynomial f4(x) with deg(f) ≤ 4. Letting β = ±αi and f4(x) = 1, one
finds that the branch points have q-gap sequence {1, 2, 3, . . . , 4q − 6, 4q − 5, 4q − 3, 4q − 1, 4q + 1},
so q-weight 6.

Now, let q = 2 and let P = (w, z) be a non-branch point. Recall that dim(H0(C, (Ω1)2)) = 6.

For 1 ≤ i ≤ 5, let ψi = (x−w)i−1

y2 dx2. For each i, ni = ordP (ψi) + 1 = i, so the first five terms of the

2-gap sequence of P are {1, 2, 3, 4, 5}. As a sixth basis element, we take y−P4(x)
y2 dx2, where P4(x)

is the degree-4 Taylor polynomial to C at x = w. (Note that P4(x) is well defined if P is not a
branch point because dy

dx |x=w 6=∞.)
By construction, ordP (y − P4(x)) ≥ 5. The sixth term of the 2-gap sequence is n6 = ordP (y−

P4(x)) + 1. Thus, if ordP (y − P4(x)) > 5, then P is a 2-Weierstrass point with 2-weight n6 − 6 =
ordP (y− P4(x))− 5. Using the Taylor series for (y− P4(x)) at x = w, one can calculate the order
of vanishing and hence the 2-weight. In particular, ordP (y − P4(x)) > 5 if and only if Φ5(w) = 0,
where Φ5(w) is a polynomial of degree at most 29 (depending on the values of s2, s3, s4).

To compute the 2-Weierstrass points with the Wronskian, we can use as a basis ψi as above
for 1 ≤ i ≤ 5 and ψ6 = (y/y2)(dx)2. A computation of the 6 × 6 determinant with Mathematica
gives Ω2 = c0(Φ(x)/y21)(dx)27 for a constant c0 and Φ(x) the polynomial Φ5 from above. Thus,
the 2-Weierstrass points are the zeroes of Ω2, which has divisor

div(Ω2) = div(Φ(x))0 + 3

(
4∑

i=4

R±i

)
+ (30− deg(Φ))(P∞1 + P∞2 ).

We conclude that the eight branch points have 2-weight 3, the two points at infinity have 2-weight
at least 1 (depending on the degree of Φ(x)), and the zeros of Φ(x) have 2-weight according to the
order of vanishing of Φ(x).

In [3] we aim to classify the 2-weights of 2-Weierstrass points on curves with automorphism
groups as described in Theorem 1. An account for all superelliptic curves of higher genus is intended
in [4].
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Abstract

A basic course in Partial Differential Equations (PDE) in Engineering, usually deals, at
least, with the following 3 different first-order PDE problems:

1. Pfaff Differential Equations, which consists on finding the general solution for:

P (x, y, z) dx+Q(x, y, z) dy +Q(x, y, z) dz = 0

2. Quasi-linear Partial Differential Equations, which consists on finding the general
solution for:

P (x, y, x) p+Q(x, y, z) q = R(x, y, z)

where p =
∂ z

∂ x
and q =

∂ z

∂ y
.

3. Using Lagrange-Charpit Method for finding a complete integral for a given general
first order partial differential equation: F (x, y, z, p, q) = 0.

In this lecture we will describe the file FOPDE.mth, developed in Derive 6 in order to solve
these three problems (their general cases and the particular cases). Since these three problems
requires several steps for their resolution, the programs developed in FOPDE.mth show step by
step all the steps providing in this way a powerful tool as a tutorial for teaching how to solve
these types of equations. This fact make possible the use of Derive 6 as a PeCas (Pedagogical
Cas) providing not only the final result but also all partial results.

On the other hand, in order to deal with such equations, the resolution of first-order
Ordinary Differential Equations (ODE) is needed. Therefore, FOPDE.mth loads the package
FOODE.mth, which is part of the Derive package that was introduced in the “Computer Algebra
in Education” Special Session at ACA 2008 ([1]).

Finally, we will state the conclusions obtained after using this file with our students and
also some future work on this and other related subjects.
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ODEs, PDEs, Derive, Cas, Pedagogical Computer Algebra System (PeCas), Engineering
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Abstract

Piecewise functions are important in applied mathematics and engineering students need to
deal with them often. In Nspire CAS, templates are an easy way to define piecewise functions;
in Derive, linear combination of indicator functions can be used. Nspire CAS integrates
symbolically any piecewise continuous function – and returns, as expected, an everywhere
continuous antiderivative – as long as this function is not multiplied by another expression.
Derive knows how to integrate sign(ax + b)f(x) where f is an arbitrary function, a and b
real numbers and “sign” stands for the signum function: this is why products of a piecewise
function with any other expression can be integrated symbolically. This will be the first part
of our talk.

In the second part of this talk, we will show some implementations that will allow Nspire
CAS to integrate symbolically products of piecewise functions with expressions: the starting
point was the discovery of a non-documented function of Nspire CAS. Examples of various
operations between two piecewise functions will be presented. As a final example, we will show
how we have defined a Fourier series function in Nspire CAS that performs as well as Derive’s
built-in “Fourier” function.

Keywords
Piecewise functions, integration, Fourier series.
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Abstract

A toolbox is a set of procedures taking advantage of the computing power and graphical
capacities of a CAS. With these procedures the students can solve math problems, apply
mathematics to engineering or simply reinforce the learning of certain mathematical concepts.

From the point of view of their construction, we can consider two types of toolboxes:

(i) the closed box, built by the teacher, in which the utility files are provided to the students
together with the respective tutorials and several worksheets with proposed exercises and
problems,

(ii) the open box, in which the students are free to construct, under teacher’s direction, their
own toolbox, which the procedures useful for solving some problems.

Both models have pedagogical advantages and disadvantages. The ideal model will proba-
bly be a transition from the closed model, appropriate in the first year of engineering studies,
to the open box model, useful for advanced mathematical topics.

The authors have experience in building both boxes using different CAS. This paper
presents a closed box model, made with DERIVE, with procedures relating to the contents of
a course in differential calculus of several variables. In the experiment, carried out during the
2012–2013 academic year at the Pontificia Comillas University, the students have received the
toolbox. The students, working in a team, solved the problems proposed in the worksheets.
They have delivered the files and they have completed a survey that attempts to measure the
usefulness and satisfaction of the experience.

Keywords
Toolboxes, Computer Algebra Systems, Engineering studies
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Technical University of Madrid (Spain)
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Abstract

This work describes an experience with a methodology for learning based on competences
in Linear Algebra for engineering students. The experience has been based in autonomous
team work of students.

DERIVE tutorials for Linear Algebra topics are provided to the students. They have
to work with the tutorials as their homework. After, worksheets with exercises have been
prepared to be solved by the students organized in teams, using DERIVE function previously
defined in the tutorials. The students send to the instructor the solution of the proposed
exercises and they fill a survey with their impressions about the following items: ease of use
of the files, usefulness of the tutorials for understanding the mathematical topics and the
time spent in the experience. As a final work, we have designed an activity directed to the
interested students. They have to prepare a project, related with a real problem in Science
and Engineering. The students are free to choose the topic and to develop it but they have to
use DERIVE in the solution. Obviously they are guided by the instructor.

Some examples of activities related with Orthogonal Transformations will be presented.

Keywords
Linear Algebra, Orthogonal Transformations, Team work, Computer Algebra Systems
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Abstract

An overview of the author’s experience in incorporating computer algebra into undergrad-
uate mathematics education is represented. The paper focuses on the need for careful planning
and informed use of computer algebra to achieve specific goals and objectives. A number of
examples are considered showing how the CAS Derive is used as a symbolic, numeric and
graphic instrument throughout the teaching-learning-assessment process in order to

• challenge existing ideas

• extend existing ideas

• work smarter not harder

• innovate not to imitate

• facilitate problem solving and save time

• make additional activities possible

• assess student’s achievements.

By combined methodology in a CAS-supported environment it occurs that Tradition wel-
comes Technology and Technology salutes Tradition. The experience shows that appropriately
created and structured activities integrated into the study plans have the potential to con-
tribute to enhancement of the teaching and learning of mathematics.

Keywords
Undergraduate mathematics, Tradition, Technology, CAS Derive

241





Session 8: Computer Algebra in
Algebraic Statistics

Organizers:

Hugo Maruri-Aguilar
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Computing real log canonical thresholds in algebraic statistics
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Abstract

The real log canonical threshold (RLCT) is a numerical invariant that measures the com-
plexity of a real singularity of an algebraic (or analytic) variety. It has appeared in algebraic
geometry, differential geometry and more recently in algebraic statistics. We present different
methods to compute the RLCT associated to directed Gaussian graphical models in causal
inference. The RLCT plays an important role for causal inference since it allows the quantifi-
cation of biases. So far, the RLCT could only be computed for some special small graphs and
computations for larger graphs or classes of graphs remained open. We present new results
related to the computation of the RLCT, give specific examples and also discuss the challenges
related to such computations.

Keywords
Real log canonical threshold, real singularity, blow up, Newton polyhedron, causal inference, bias

quantification, directed Gaussian graphical model, collider-stratification bias

1 Introduction

Determining causal relations between variables is a fundamental goal in many areas of science.
A popular approach is to model the causal relationships by a directed acyclic graph (DAG) and
assume that the variables follow a Gaussian distribution. In various applications, it is of particular
interest to estimate the edge weight of a particular edge E → D, as for example the direct effect of
an exposure E on a disease outcome D in the medical setting. The presence of multi-edge paths
between the nodes E and D lead to bias in effect estimation (see e.g. [4, 5]). In a recent paper,
Lin, Uhler, Sturmfels and Bühlmann [6] showed that quantifying such bias is related to the real
log canonical threshold (RLCT) of a certain variety whose defining polynomial is a weighted sum
over certain paths between E and D. In this paper, we first introduce directed Gaussian graphical
models (Section 2) and a specific form of bias, namely collider-stratification bias (Section 3). We
then introduce the RLCT and present some methods for computing the RLCT (Section 4). Then,
we apply these methods to quantify collider-stratification bias in effect estimation for special classes
of DAGs.

2 Directed Gaussian graphical models

The model considered in this paper is defined as follows: Let G = (V,E) be a weighted DAG with
V = {1, 2, . . . , p}. Directed edges are denoted by i → j or (i, j). Without loss of generality we
can assume that the vertices are topologically ordered, meaning that there can only be a directed
edge i → j if i < j. Then the edge weights (i.e. the direct causal effects) in a DAG G are given
by a (strictly upper triangular) adjacency matrix AG with entries aij 6= 0 if (i, j) ∈ E and zero
otherwise. To each node i we associate a random variable Xi. Defining a Gaussian graphical model
by the linear structural equations X = ATGX + ε, where X = (X1, . . . , Xp)

T and ε ∼ N (0, I), the
random vector X follows a Gaussian distribution with mean zero and inverse covariance matrix
K = (AG − I)(AG − I)T .

245



A particular edge weight aij is estimated from the partial correlation corr(i, j |S), where S ⊂
V \{i, j}. Algebraically, partial correlations can be computed from minors of the inverse covariance
matrix K as follows:

corr(i, j|S) =
det(KiR,jR)√

det(KiR,iR) · det(KjR,jR)
. (1)

where R = V \(S∪{i, j}) and iR = {i}∪R. Since the denominator is always positive and only used
for normalization to ensure that −1 ≤ corr(i, j |S) ≤ 1, we here concentrate on the numerator. To
give a combinatorial description of det(KiR,jR) based on paths in the DAG G the following graph-
theoretic notions are needed: A node i is an ancestor of j if there is a directed path i→ · · · → j,
and a configuration i → k, j → k is called a collider at k. It was shown in [7, Equation (11)]
that, combinatorially, the numerator det(KiR,jR) is a linear combination of the weights of all active
paths between i and j given S, meaning all undirected paths P between i and j such that every
non-collider in P is not in S and every collider in P is in S or an ancestor of a node in S. For
estimating the direct effect aij from corr(i, j |S), all active paths other than the direct edge are
thus considered as bias.

The volume of the “tube” corresponding to corr(i, j |S),

Tubei,j|S(λ) = { (aij)(i,j)∈E ∈ R|E| : | corr(i, j|S)| ≤ λ }, (2)

in a DAG where the edge (i, j) has been removed, is of particular interest for quantifying the bias
when estimating the direct effect aij . For λ close to zero, this tube corresponds to the parameters
which contribute negligibly to the bias. So the larger the volume

Vi,j|S(λ) =

∫

Tubei,j|S(λ)

ϕ(ω)dω (3)

(where ϕ is taken to be the Lebesgue measure), the smaller the bias in effect estimation. For small
values of λ it has been shown in [6] that

Vi,j|S(λ) ≈ C · λ` · (− lnλ)m−1,

where C is a positive constant, l ∈ Q+ and m ∈ Z+.

Definition 2.1. The real log canonical threshold (RLCT) of the hypersurface corresponding to
the vanishing of the polynomial f = corr(i, j|S), or equivalently to det(KiR,jR) = 0, with respect
to a measure ϕ(x)dx at Ω, is defined as

RLCTΩ(f, ϕ) = (`,m).

RLCTs are ordered reversely by the size of λ`(− lnλ)m−1, i.e.

(`1,m1) < (`2,m2) ⇐⇒ `1 < `2 or `1 = `2 and m1 > m2.

In Section 4, we study the RLCT in more detail and show how to compute it in specific examples
of relevance to bias quantification in causal inference.

3 Collider-stratification bias

In this paper, we focus on a particular form of bias, namely collider-stratification bias. Suppose
we are given a DAG G with i, j ∈ V and there is another node C such that

i→ V1 → · · · → Vs → C ←W1 ← · · · ←Wt ← j.

Stratifying (i.e. conditioning) on C activates the above path between i and j leading to bias when
estimating aij . The partial correlation corresponding to this active path between i and j is known
as collider-stratification bias.

It is widely believed that collider-stratification bias tends to attenuate when it arises from more
extended paths (see [3, 4] and Problem 6.2 in [6] for a precise mathematical conjecture). In the
following, we give further evidence for this conjecture based on computations for a specific class of
DAGs, namely complete tripartite graphs, DAGs consisting of three “levels” of vertices, A = {1, 2},
B = {1, 2, . . . ,m} and C = {1, 2, . . . , n}, where (a, b) ∈ E and (b, c) ∈ E for all a ∈ A, b ∈ B and
c ∈ C. An example is shown in Figure 1.
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Figure 1: Complete tripartite graph.

For complete tripartite graphs the conjecture regarding the attenuation of bias over long paths
can be formulated as follows (see also Problem 6.2 in [6]):

V1,2|B(λ) ≤ V1,2|C(λ), (4)

meaning that the bias introduced when conditioning on the nodes in B is larger than when con-
ditioning on the nodes in C. This conjecture has been proven when m = 1 [6, Example 6.3] or
n = 1 [6, Example 6.5]. We therefore concentrate on m,n > 1.

To prove this conjecture, we need to compute the RLCT corresponding to the two hypersurfaces
defined by K1C,2C and K1B,2B . We first describe these two polynomials in terms of paths in the
DAG. For simplicity of notation, we denote the edge weights between nodes in A and B by aij and
the edge weights between nodes in B and C by bij .

The path representation of K1C,2C when conditioning on B is simple. It is just the sum over
all paths going from node 1 to some node in B to node 2, i.e.

K1C,2C =

m∑

s=1

a1sa2s. (5)

Finding a path representation for K1B,2B when conditioning on C is more difficult, but can be
done by applying the explanations in [7, Section 4]. For space reasons we here only give the formula
when either |B| = 2 or |C| = 2. For |B| = 2

K1B,2B =

2∑

s=1

a1sa2s




n∑

i=1

b2si


1 +

∑

j 6=i,t6=s
b2tj


− 2

∑

i 6=j
b1ib1jb2ib2j


+

∑

s6=t
a1sa2t

n∑

i=1

b1ib2i.

This formula consists of two main components, paths which go from the two nodes in A to the
same node s ∈ B, and paths which go to different nodes s, t ∈ B. For the paths which go to the
same node s ∈ B, there are two possibilities: either

1→ s→ i← s← 2, where s ∈ B, i ∈ C

and this can be multiplied with cycles of length 2 in the remaining nodes, or

1→ s→ i← t→ j ← s← 2, where s 6= t ∈ B, i 6= j ∈ C.

The paths which go to different nodes s, t ∈ B then need to find together in C and hence are of
the form

1→ s→ i← t← 2, where s 6= t ∈ B, i ∈ C.
For |C| = 2 the path representation is slightly more complicated, but follows along the same

lines as for |B| = 2:

K1B,2B =

m∑

s=1

a1sa2s




2∑

i=1

b2si


1 +

∑

t 6=s,j 6=i
b2tj


− 2bs1bs2

∑

t 6=s
bt1bt2


+

∑

s6=t
a1sa2t




n∑

i=1

bsibti


1 +

∑

r 6=s,t,j 6=i
b2rj


−

∑

i 6=j
bsibtj


∑

r 6=s,t
bribrj




 .

In the following section we describe some methods to compute the RLCTs corresponding to K1B,2B

and K1C,2C . This will provide a big step towards the proof of the conjecture in general, while
completes the proofs for some specific complete tripartite graphs.
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4 Real log canonical threshold

In the following, we recall two methods to compute the RLCT and explain how they can be applied
to compute the relevant RLCTs in the conjecture discussed in the previous section.

Method I: Blow up.

The following proposition, which was proven in [6], shows how a change of variables or a blow up
effects the RLCT.

Proposition 4.1 ( [6], Proposition 3.5). Suppose ϕ(ω) = ωτ11 . . . ωτdd and f(ω) = ωκ1
1 . . . ωκr

r g(ω),
where κ1, . . . , κr are nonzero and the hypersurface {g(ω) = 0} is normal crossing with ω1, . . . , ωr.
Let ω0 denote the function g and let κ0 = 1, τ0 = 0. Define

l = min
i∈I

τi + 1

κi
, J = argmin

i∈I

τi + 1

κi
, m = |I|,

where I is the set of all indices 0 ≤ i ≤ r such that ωi has a root in Ω. If the equations ωi = 0 for
i ∈ J has a root in the interior of Ω, then RLCTΩ(f ;ϕ) = (l,m).

Applying this method we can compute the RLCT of the polynomial K1C,2C given in (5). Note
that this polynomial only consists of paths between nodes in A and in B and hence only depends
on |B| = m:

Lemma 4.2. RLCT(K1C,2C) =

{
(1, 2) if m = 1
(1, 1) if m ≥ 2

Proof. For brevity, we denote K1C,2C by f . We recall that a point p of a hypersurface is singular
if all first order partial derivatives vanish at this point. Note that f is singular only at the origin.
Blowing up the hypersurface {f = 0} at the origin leads to a new variety Y , which is birational to
X. It is defined by

u2f = 0 ⊂ RP2m−1 × R,

where the coordinates on P2m−1
R are a11, . . . , a1m, a21, . . . , a2m, and u is the coordinate on R. It is

covered by 2m patches. The first patch, for example, is defined by

{u2(a21 + a12a22 + · · ·+ a1ma2m) = 0} ⊂ R2m

The contribution of the Jacobian gives ϕ = u2m−1. One can then easily check that the RLCT at
this patch is (1, 1) using Proposition 4.1. The claim follows as the computation on all patches are
identical.

Method II: Newton Polyhedron.

Let f =
∑Mi be a polynomial in n variables x1, . . . , xn, where Mi = cix

mi1
1 . . . xmin

n are the
monomials appearing in f with ci 6= 0. The Newton polyhedron of f is denoted by P(f) and is
defined as the convex hull generated by (mi1, . . . ,min) ∈ Rn for i = 1, . . . , r. For a compact subset
C ⊂ Rn the corresponding face polynomial is given by

fC =
∑

i: (mi1,...,min)∈C
Mi.

A polynomial f is nondegenerate if all face polynomials are non-singular in (R∗)n. i.e.

Sing(fC) ∩ (R∗)n = ∅ for all compact faces C ⊂ P(f).

Then for a polynomial f the real log canonical threshold of its Newton polyhedron is defined as

RLCT(P(f)) = (τ, θ),

where τ = sup{r | 1 /∈ rP(f)} and θ is the codimension of the face of τP(f) that contains 1.

The following result from [2] gives a sufficient condition for equality of the RLCT of a polynomial
and the RLCT of its Newton polyhedron.
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Theorem 4.3 ( [2], §8.3). If f is non-degenerate and has a minimum or maximum near the origin
then RLCT(f) = RLCT(P(f)).

In the following theorem we show that the unnatural and non-algebraic condition of having a
minimum or maximum close to the origin can in fact be removed:

Theorem 4.4. If f is non-degenerate then RLCT(f) = RLCT(P(f)).

Sketch of the proof. The condition of having a minimum or maximum close to the origin in the
proof of Theorem 4.3 guarantees that Sing(f) contains real points. However, one can verify that this
statement follows directly from the non-degeneracy of f . For a complete proof see the forthcoming
extended version of this paper.

In the following we describe work in progress. Our conjecture is that the polynomial K1B,2B is
non-degenerate for all sizes m = |B| and n = |C|. One can check this conjecture for small values of
m,n using the Macaulay2 library asymptotics.m2, and we are working on a general proof. It then
follows from Thoerem 4.4 that the RLCT of K1B,2B equals the RLCT of its Newton polyhedron.
For small examples of m,n > 1 one can check using methods of Lin [1] in Macaulay2 by computing
the RLCT of the Newton polyhedron that RLCT(P(K1B,2B)) = (1, 1). We are working on proving
this conjecture for general m,n > 1. As a consequence one would get

RLCT(P(K1C,2C)) = (1, 1) = RLCT(P(K1B,2B)).

So in order to prove the general conjecture V1,2|B(λ) ≤ V1,2|C(λ) for small λ > 0, we need to
analyze the constants.

The examples considered in this paper indicate that only computing the RLCT is often not
sufficient for answering questions of interest in causal inference. This has been noted also in [6] and
some results regarding the computation of the constants has appeared in [6, Chapter 8]. However,
in order to solve some of the important problems related to the quantification of bias in causal
inference, further research in this direction is necessary.
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Abstract

In this work we remark on the error estimation in cubature formulae. We combine methods
from Commutative Computational Algebra and Orthogonal Polynomial Theory to address a
problem common to many disciplines: the estimation of the expected value of a polynomial of
a random vector using a linear combination of a finite number of its values.

Keywords
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1 Introduction

We continue work in [1] which addresses the classical cubature problem with tools from Algebraic
Statistics for experimental design ([6, 7]) and Computational Commutative Algebra. Related
seminal work is in ([5, 4]). We deal with the classical problem of computing the expected value of
a real function f of the d-variate random vector X as a linear combination of its values f(z) at a
finite set of points z ∈ D ⊂ Rd.

Fassino et al. (2013) in [1] consider the computational algebra setting for the problem of
approximating the expected value of multidimensional polynomial functions by means of cubature
formulæ. All functions and quantities intervening in their computations are expressed in terms
of a given set of orthogonal polynomials. A good reference for orthogonal polynomials is [2]. In
particular we reformulate Theorem 7 in [1] in order to characterize the error of a cubature rule
and generalize it to non-product probability measures.

2 The error formula

Let D ⊂ Rd be a finite set of distinct real points in d-dimension, D ⊂ Rd and R[x] with x =
(x1, . . . , xd) the set of polynomials with real coefficients in d indeterminates. We fix a term ordering
σ on R[x]. In the examples we use the degree lexicographic term ordering with x2 < x1. Let I(D)
be the vanishing ideal of D and G the σ-reduced Gröbner basis of I(D).

Example 1 For the five point design in two dimensions

D =
{

(x1, x2) ∈ R2 : x31 − 3x1 = x32 − 3x2 = x21 − x22 = 0
}
,

the σ-reduced Gröbner basis, G, of the vanishing ideal of D, I(D), is g1 = x21 − x22, g2 = x32 − 3x2,
g3 = x1x

2
2 − 3x1.

By Euclidean division with respect to G, a polynomial p ∈ R[x] can written as

p =
∑

g∈G
qgg + r

where the remainder r is the unique element of R[x]/I(D) such that p(d) = r(d) for all d ∈ D and
no term of r is divisible by the leading terms of g ∈ G. Importantly r is a linear combination of
the type r =

∑
α∈L cαx

α with L = Lσ,D = {α ∈ Zd≥0 : xα 6∈ LT (I(D))}. Here LT (p) is the leading
term of p with respect to σ. The quotients qg, g ∈ G, do not need to be unique.
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Example 2 In the set-up of Example 1, for p = x41x
2
2 − 4x41 − 6x21x

2
2 + 24x21 + 3x22 − 12 we have

qg1 = x21x
2
2 + x42 − 4x21 − 10x22 + 24, qg2 = x32 − 7x2, qg3 = 0 and r = 6x22 − 12.

We start with a particular class of orthogonal polynomials. Let λ be a one-dimensional probabil-
ity measure with finite moments and {πn}n∈Z≥0

be its associated orthogonal polynomial system.

To a multi-index α = (α1, . . . , αd) ∈ Zd≥0 we associate the monomial xα = xα1
1 · · ·xαdd and the

product of polynomials πα(x) = πα1
(x1) · · ·παd(xd). Note that {πα}α is a system of orthogonal

polynomials for the product measure λd = λ⊗d under stochastic independence.
A monomial xα of total degree s =

∑d
i=1 αi is a unique linear combination of πβ where∑d

i=1 βi ≤ s and viceversa any πβ is a linear combination of xα with
∑d
i=1 βi ≥

∑d
i=1 αi. Hence

for any multi-index α there are a monomial xα and an orthogonal polynomial πα. A term-ordering
σ for the xα corresponds to an ordering for the πα.

Example 3 As reference measure λ we take the standard normal distribution whose density is
f(z) =

√
2πe−z

2/2, z ∈ R and whose corresponding orthogonal polynomials are the Hermite
polynomials, indicated with Hn(z), n = 0, 1, . . . For example H0(z) = 1, H1(z) = z, H2(z) = z2−1
and H(i,j)(x1, x2) = Hi(x1)Hj(x2) for i, j = 0, 1, . . .. With this notation we can write the g
polynomials in Example 1 as g1 = H2(x1)−H2(x2), g2 = H3(x2), g3 = H1(x1)(H2(x2)− 2).

Theorem 1 (Theorem 9 in [1]) With the notation above, for g ∈ G and xα = LT (g) write

g = πα −
∑

α>σβ∈L
cβ(g)πβ (1)

where α >σ β ∈ L stands for α >σ β and β ∈ L. For p =
∑
g∈G qgg+r ∈ R[x] consider the Fourier

expansion of each qg =
∑
β cβ(qg)πβ and the Fourier expansion of r =

∑
α∈L cα(r)πα. Let X be a

random vector following λd. Then

1. Eλ (p(X)) = Eλ (r(X)) +Rn(p) where n is the number of points in D and

Rn(p) =
∑

g∈G
‖πα‖2λcα(qg)−

∑

g∈G

∑

α>σβ∈L
‖πβ‖2λcβ(qg)cβ(g), (2)

2. Eλ (r(X)) =
∑
z∈D p(z) Eλ (λz(X)) where λz(x) is the indicator function of the point z ∈ D:

λz(x) = 1 if x = z and λz(x) = 0 if x ∈ D \ {z} and

3. furthermore
Eλ (p(X)) = c0d(p) = c0d(r) +Rn(p)

where 0d is the d-dimensional vector with all components equal to zero.

Assume now a (possibly non-product) probability measures, λ admitting a system of orthogonal
polynomials {πα}α, α ∈ Zd≥0. Theorem 2 generalises Theorem 1 to such a measure. Item 2 has
already been observed in [3].

Theorem 2 Let λ be a probability measure with a system of orthogonal polynomials, {πα}α. Let
D ∈ Rd be a finite set of n-distinct points, σ a term ordering on R[x] and G a σ-reduced Gröbner
basis for I(D). Write p ∈ R[x] as p =

∑
g∈G qgg + r by Euclidean division. Consider the Fourier

expansions of the following polynomials g =
∑
α cα(g)πα for all g ∈ G, of qg =

∑
β cβ(qg)πβ for

all g ∈ G and of r =
∑
γ cγ(r)πγ . Then

1. Eλ (p(X)) = Eλ (r(X)) +Rn(p) and

Rn(p) =
∑

g∈G

∑

α

‖πα‖2λcα(qg)cα(g) (3)

and both sums are finite,

2. Eλ (r(X)) =
∑
z∈D p(z) Eλ (λz(X)) where λz(x) is the indicator function of z ∈ D and

3. furthermore Eλ (p(X)) = c0d(p) = c0d(r) +Rn(p).
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Proof. The proof is similar to that of Theorem 1 which relies on general properties of orthogonal
polynomials, on polynomial division and on rearranging terms of Fourier expansions. By lineary
of expectation from

p(x) =
∑

g∈G
qgg + r =

∑

g∈G
qgg +

∑

z∈D
p(z)λz

we deduce
Eλ (p(X)) =

∑

g∈G
Eλ (qg(X)g(X)) +

∑

z∈D
p(z) Eλ (λz(X)) .

Substitute the Fourier expansions in the first sum

∑

g∈G
qgg =

∑

g∈G


∑

β

cβ(qg)πβ
∑

α

cα(g)πα




These are all finite sums because Fourier expansions of polynomials and because G is finite. Ex-
pectation of πα(X)πβ(X) with α 6= β is zero because of orthogonality: Eλ (πα(X)πβ(X)) = 0 if
α 6= β and if α = β it is equal to the square norm ‖πα‖2λ. Thus taking expectation of (2) gives

Eλ


∑

g∈G
qg(X)g(X)


 =

∑

g∈G

∑

α

‖πα‖2λcα(qg)cα(g).

Item 2 and 3 can be proven as in Theorem 1. ♦

Theorems 1 and 2 give necessary and sufficient conditions for exact quadrature of any polyno-
mial p ∈ R[x]. They also give a formula for the error. Item 3 follows by applying Eλ (πα(X)) = 0
for all α ∈ Zd≥0 \ {0d} to the Fourier expansions of p and r. Item 2 gives the cubature formula
expressed in terms of the values of p at the points in D and in terms of D. The weights of the
cubature rule Eλ (λz(X)) depend on the polynomial indicator functions λz(x) of z ∈ D.

As the algebraic variety D is zero-dimensional, all quantities involved in Theorem 1 can be
computed with linear operations. Table 4 in [1] gives the relationship between the Gröbner basis
of D and the orthogonal polynomials (see (iii) in [3]). It provides an analogue of the Buchberger-
Möller (O-BM) algorithm for orthogonal polynomials and it computes a σ-reduced Gröbner basis
of I(D) by working only in the space of orthogonal polynomials. A by-product of the O-BM
algorithm is the computation of the Fourier coefficients of r. In particular it returns c0d(r) in
Item 3, that is the value of the cubature rule giving the estimation of the expected value of p(X)
and the exact value of Eλ (r(X)). For Theorem 2 we are not able to make analogue statements
yet.

3 Remarks on the error formula

- The expected values of polynomials of “low degree” is the value of the cubature rule and the
error is zero. Indeed consider p =

∑
α∈L cαx

α ∈ R[x]/I(D) where L = Lσ,D depends only on
the Gröbner basis G and hence only on the design and the term ordering. Then the quotients
qg of the Euclidean division of p by G are all zero and the error formulæ (2) and (3) are zero.

In particular all moments Eλ (Xα) with α ∈ L are zero (see also [3]).

- The error formulæ (2) and (3) are linear polynomials in the Fourier coefficients cα(qg) which
determine the polynomial p. Whilst the norms of the orthogonal polynomials πα are supposed
known and the Fourier coefficients cα(g) are derived from the design D and the term ordering
σ. For the case of product probability measure they can be computed by the algorithm in
Table 4 in [1].

- The error formula (3) can be seen as the scalar product of two vectors. The sum over α is
finite and goes up to the largest leading term of g ∈ G. Let

TG =
⋃

g∈G

{
α ∈ Zd≥0 : cα(g) 6= 0 with g =

∑

α

cα(g)πα

}
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Fix α ∈ TG then each term in the error formula (3) is the scalar product of the two vectors
(cα(qg) : g ∈ G) and (cα(g) : g ∈ G), call it sα. Then we can define a weighted relative

cubature error as Sn(p) =
Rn(p)∑

α∈TG ‖πα‖2
=

∑
α∈TG sα(p)‖πα‖2∑

α∈TG ‖πα‖2
.

- It is known that the quotients of division are not necessarily unique even when dividing by a
reduced Gröbner basis. This does not have an effect on the value of error Rn(p) as the error
in the cubature rule is unique. A simple algebraic proof is: for the σ-reduced Gröbner basis
of I(D), G, and p a polynomial, consider two results of the Euclidean division of p by G

p =
∑

g∈G
qgg + r =

∑

g∈G
q′gg + r

where the reminder is the same and qg and q′g could be different. Taking expectation gives

Rn(p) =
∑

g∈G

∑

α

‖πα‖2λcα(qg)cα(g) =
∑

g∈G

∑

α

‖πα‖2λcα(q′g)cα(g).

- If G is a σ-reduced Gröbner basis and for each g ∈ G there exists γ such that g = πγ then
Rn(p) in (3) simplifies to Rn(p) =

∑
γ ‖πγ‖2λcγ(qγ). Next we show some particular cases.

- Consider the particular case of product grid, that is the design D is a product grid of zeros
of univariate orthogonal polynomials:

D =
{
x = (x1, . . . , xd) ∈ Rd : πni(xi) = 0 with ni ∈ Z>0 and i = 1, . . . , d

}
.

This implies a product probability measure. Then G = {πn1(x1), . . . , πnd(xd)}, the second
term in Formula (2) is zero for every polynomial p and the error simplifies to Rn(p) =∑d
i=1 ‖πni‖2λcni(qi).

Furthermore cni(qi) = 0 if p does not include the term x2nii . It follows that the cubature
rule is exact for all polynomials p such that for all i = 1, . . . , d their degree in the variables
xi is smaller than 2ni. Recall that ni is the number of distinct zeros of πni(xi). This is
a high-dimensional analogue of the well-known result for one-dimensional quadrature rules
stating that they are exact for all polynomials of degree at most 2n−1 where n is the number
of nodes.

We conclude with our running example.

Example 4 To compute the value of cubature rule we use the algorithm in Table 4 in [1] and
find that Eλ (r(X)) = −6. To estimate the error Rn(p) we compute the Fourier expansions of qgi ,
i = 1, 2, 3 by hand by using Theorem 4 in [1] and obtain

qg1 = H4(x1)H4(x2) + 6H2(x1)H4(x2)−H4(x1) + 3H4(x2), qg2 = H3(x2)− 4H1(x2), qg3 = 0.

From this we deduce that g1 and g3 contribute zero to Rn(p) in Formula (2) and

Rn(p) = ‖H3(x2)‖2c(0,3)(qg2) = 3!1 = 6.

In this case we can check directly that indeed Eλ (p(X)) = 0.

Notice that in the application we have in mind, a typical one in numerical integration, we do
not know p (only the values of p at D are available) and hence we cannot know the qgi . It would
be interesting to use error formulæ (2) and (3) to determine larger classes of D and p for which
the cubature rule is exact than the product grid we give above.
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[4] H. M. Möller (1987). On the construction of cubature formulae with few nodes using Groebner
bases. Numerical integration (Halifax, N.S., 1986), NATO Adv. Sci. Inst. Ser. C Math. Phys.
Sci., vol. 203, Reidel, Dordrecht, 1987, pp. 177192.
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Abstract

We employ tools from the field of symbolic computation for the construction of new classes
of combinatorial designs, in particular complementary sequences and orthogonal designs. Com-
binatorial designs are used in a variety of applications ranging from statistics to coding theory
and from telecommunications to software testing.
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1 Introduction

Orthogonal designs (ODs) are square matrices with entries in the field of quotients of the integral
domain Z[a1, a2, . . . , a`] with certain orthogonality properties while complementary sequences are
tuples of sequences with zero autocorrelation function and elements from the same domain as the
orthogonal designs. Orthogonal designs have numerous applications in Statistics, Telecommunica-
tions, Coding Theory and Cryptography, see [2, 6, 7]. An OD of order n and type (t1, t2, . . . , t`)
denoted OD(n; t1, t2, . . . , t`) in the commuting variables a1, a2, . . . , a`, is a square matrix D of

order n with entries from the set {0,±a1,±a2, . . . ,±a`} satisfying DDT =
∑`
i=1(tia

2
i )In, where

In is the identity matrix of order n.
Our approach is twofold; firstly we develop an algebraic framework that models properties

of complementary sequences. In this manner, we can apply tools from symbolic computation,
i.e., Gröbner bases, to algorithmically treat complementary sequences. Our goal is to obtain an
effective (algorithmic) version of the reverse of the celebrated Equating/Killing Lemma in the
theory of orthogonal designs.

Lemma 1 (Equating and Killing Lemma [2]). If D is an orthogonal design OD(n; t1, t2, . . . , t`)
in the commuting variables {0,±a1,±a2, . . . ,±a`}, then there exist orthogonal designs:

(i) OD(n; t1, t2, . . . , ti + tj , . . . , t`) (ai = aj) (Equating)

(ii) OD(n; t1, t2, . . . , tj−1, tj+1, . . . , t`) (aj = 0) (Killing)

on the u− 1 commuting variables {0,±a1,±a2, . . . ,±aj−1,±aj+1, . . . ,±a`}.
Sequences of zero autocorrelation give rise to ODs, for more details see [2, 6, 7]. In this work,

we focus on the level of complementary sequences instead of ODs. In particular, given a set
of complementary sequences of type (t1, t2, . . . , t`), we investigate how to compute a new set of
complementary sequences of type (t1, t2, . . . , ti−1, a, b, ti+1, . . . , t`) and another set of complemen-
tary sequences of type (t1, t2, . . . , t`, t`+1) (if possible, otherwise decide it is impossible). In the
aftermath, these sets of sequences can be used in suitable arrays to generate the desired ODs.

∗This work was carried out during the tenure of an ERCIM “Alain Bensoussan” Fellowship Programme. This
Programme is supported by the Marie Curie Co-funding of Regional, National and International Programmes
(COFUND) of the European Commission. In addition, this work was funded by COMET K1, FFG - Austrian
Research Promotion Agency.
†This research was partially supported by Austrian Science Fund (FWF) grants P20347-N18 and P22748-N18.
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2 Complementary Sequences

2.1 Notation

Let A = {a1, a2, . . . , a`} be a set of ` variables. We denote by SA,n the set of sequences of length n
containing elements from {±a1,±a2, . . . ,±a`} ∪ {0}. Given k sequences Si ∈ SA,n for i ∈ [k], we
define the k-tuple T to be the sequence T = (Si)i∈[k], where [k] = {1, . . . , k}. The set of all k-tuples

containing sequences from SA,n is denoted by Tn,`k . We note that the names of the variables are

not essential, thus for denoting Tn,`k , ` is sufficient and A is not needed.
Given a sequence S we denote by [S]a the number of occurrences of ±a in S. We extend the

definition for tuples in a natural way, as follows. For T ∈ Tn,`k , we have

[T ]i =

k∑

j=1

[Sj ]i.

Definition 2 (Type). Given a tuple T ∈ Tn,`k with elements from {a1, a2, . . . , a`}, we define its
type, denoted T (T ), to be (t1, t2, . . . , t`) if ti = [T ]ai for i ∈ [`].

2.2 Autocorrelation Function

Let T ∈ Tn,`k , then we define the non-periodic autocorrelation function NPAFT (s) (abbreviated as
NPAF) of T as

NPAFT (s) =

k∑

j=1

n−s∑

i=1

SjiSji+s (1)

for s = 0, 1, . . . , n− 1 and the periodic autocorrelation function PAFT (s) (abbreviated as PAF) of
T , is defined, reducing i+ s modulo n, as

PAFT (s) =

k∑

j=1

n∑

i=1

SjiSji+s (2)

for s = 0, 1, . . . , n− 1.
It is clear that PAFT (s) = NPAFT (s) + NPAFT (n − s), for s = 1, . . . , n − 1. Therefore, if

NPAFT (s) = 0 for all s = 1, . . . , n − 1, then PAFT (s) = 0 for all s = 1, . . . , n − 1. But, PAFT (s)
may equal zero for all s = 1, . . . , n− 1, even if the NPAFT (s) are not.

Definition 3. Let T ∈ Tn,`k with T (T ) = (t1, t2, . . . , t`). We say that T is k−PAF(n; t1, t2, . . . , t`)
(resp. k − NPAF(n; t1, t2, . . . , t`) if T has zero PAF (resp. NPAF), i.e, PAFT (s) = 0 (resp.
NPAFT (s) = 0) for s = 1, . . . , n− 1.

Remark 4. Recall that the k-tuple T ∈ Tn,`k was defined as a tuple of sequences Si ∈ SA,n
for i ∈ [k]. When the assumptions of definition 3 hold, we say that the k-tuple T is a tuple of
complementary sequences.

For more details on complementary sequences and their application in the construction of ODs
we refer the interested reader to [2, 3, 4, 7].

In order to unify notation and since the distinction is not essential for the rest of the model, we
will use AFT to denote the autocorrelation function (AF) of a tuple T , irrelevant of whether it is
the non-periodic or the periodic one. When needed, the distinction will be made clear by context.

Let T ∈ Tn,`k , then

AFT (s) =

k∑

j=1

p∑

i=1

SjiSji+s (3)

for s = 0, 1, . . . , n − 1. As already mentioned we are interested only in the two possible types of
AF defined previously, namely the non-periodic AF where p = n− s (c.f. Eq. 1) and the periodic
AF where p = n and i+ s is computed modulo n (c.f. Eq. 2).

Finally, we would like to mention that this work is an extension of our previous approach to
provide an algebraic framework for complementary sequences [5].
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3 An Algebraic Model for Complementary Sequences

The goal of this section is to develop an algebraic framework for the manipulation of complementary
sequences. The three problems we consider are split, fill and expand, where split is the reverse
of Equating while fill and expand are the reverse of Killing. Given a tuple T ∈ Tn,`k with
T = (t1, t2, . . . , t`), we will construct three algebraic systems Ss, Sf and Se whose solutions give

rise to tuples in Tn,`k with types:
split fill expand

(t1, . . . , ti−1, t, ti − t, ti+1 . . . , t`) (t1, t2, . . . , ti, t, ti+1, . . . , t`) (t1, t2, . . . , ti + t, . . . , t`)

for some t ∈ [ti − 1] for some t ∈
[
kn−∑`

i=1 ti

]
for some t ∈

[
kn−∑`

i=1 ti

]

The first step is to introduce new variables xi and substitute accordingly in the tuple:
split fill expand

xi for i ∈ [ti] and substitute the
j-th occurence of ai by xj

xi for i ∈
[
kn−∑`

i=1 ti

]
and

substitute the j-th 0 by xj

xi for i ∈
[
kn−∑`

i=1 ti

]
and

substitute the j-th 0 by xj
Now we have a tuple of sequences where each position that is candidate to change is assigned

to a new variable. We denote by m the number of new variables (this varies depending on the

problem). We denote this tuple by T ′ and note that this tuple no longer belongs to Tn,`k , but

in Tn,`+mk . In order to construct an algebraic model we need to express autocorrelation relations
and the type of a tuple algebraically. Moreover, the variables should be bounded and discrete.
Although structurally the algebraic systems are the same for all three problems, at each step, the
polynomials added in the system are slightly different. Let R = Q[a1, a2, . . . , a`, x1, x2, . . . , xm] be
the polynomial ring in `+m variables over the field of rational numbers.

Zero autocorrelation In order to encode autocorrelation algebraically, we observe that the
expression for the autocorrelation function is already a polynomial one. It is clear that AFT ′ (s) ∈ R
for s = 0, 1, . . . , n − 1, i.e., AFT ′ (s) is a polynomial in the variables a1, a2, . . . , a`, x1, x2, . . . , xm.
The algebraic conditions for the new tuple, where in the position of xi we put the value indicated
by the root of the system, being a k-AF tuple is that these polynomials are zero.

Bounded Discrete Variables By bounded discrete variable, we mean a variable that takes
values from a finite subset of the integers. We need to restrict the solutions of the algebraic
systems to take particular values in order to use the solutions to construct new tuples with the
desired types. It is easy to see that for fi ∈ K [x1, x2, . . . , xm] we have V (〈f1, f2, . . . , fk〉) ∩Mm =
V (〈f1, f2, . . . , fk, b1, b2, . . . , bm〉), where bi =

∏
α∈M (xi−α) and M is a finite subset of the algebraic

closure of K.
It is exactly these polynomials bi that we need to add to the respective algebraic systems for

each of the problems, depending on what set we want the solutions to be restricted in.
split fill expand

bi = x4i − 1 bi = xi
(
x2i − 1

)
bi = xi

(
x2i − a2

)

xi ∈ {±1,±i} xi ∈ {0,±1} xi ∈ {0,±a}
The choice for these values is justified since for split we want to introduce two new (signed)

symbols in the tuple, for fill we want to introduce one new (signed) symbol but we should allow
for zeros to remain zeros and for expand we want to introduce no new symbol, but use the existing
one that is being expanded and allow for possible zeros.

Type Conditions We need conditions that force a certain type for the new tuple. For this we
use two polynomials, one relating the xi variables to the variable xt and one that forces xt to take
discrete values in a feasible range {1, 2, . . . , B}.

For split we have that a variable a can be split into two variables of type xt and [T ]a − xt for

1 ≤ xt ≤
⌊
[T ]a
2

⌋
. For fill and expand we have that a variable (new or existing respectively) can

replace up to kn−∑`
i=1 ti zeros. Thus the type conditions consist of two polynomials as follows:

split fill expand

B =
⌊
[T ]a
2

⌋
B = kn−∑`

i=1 ti B = kn−∑`
i=1 ti

T1 =
∏B
i=1 (xt − i) T1 =

∏B
i=1 (xt − i) T1 =

∏B
i=1 (xt − i)

T2 =
(∑m

i=1 x
2
i

)
−m+ 2xt T2 =

(∑m
i=1 x

2
i

)
− xt T2 =(∑m

i=1 x
2
i

)
− a2 ([T ′]a + xt)
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The algebraic system According to the discussion above, we have that the three algebraic
systems Ss, Sf and Se are as follows:

split fill expand

Ss =



AFT ′ (s) for s ∈ [n]
Bi = x4i − 1, i ∈ [m]

T1 =
∏B
i=1 (xt − i)

T2 =
(∑m

i=1 x
2
i

)
−m+ 2xt





Sf =



AFT ′ (s) for s ∈ [n]
Bi = xi

(
x2i − 1

)
, i ∈ [m]

T1 =
∏B
i=1 (xt − i)

T2 =
(∑m

i=1 x
2
i

)
− xt





Se =



AFT ′ (s) , s ∈ [n]
Bi = xi

(
x2i − a2

)
, i ∈ [m]

T1 =
∏B
i=1 (xt − i)

T2 =
(∑m

i=1 x
2
i

)
−

a2 ([T ′]a + xt)





Retrieving the solutions The algebraic systems Ss, Sf and Se provide us with solutions to the
three problems at hand. The last step we need to take is to interpret a root of the system and
connect it to a new tuple of complementary sequences. Assume that α = (α1, α2, . . . , αm) is such
a root of the respective algebraic system. Then we create a new tuple making substitutions in T ′

as follows:
split fill expand




if αi = 1 then xi = a
if αi = −1 then xi = −a

if αi = i then xi = b
if αi = −i then xi = b









if αi = 0 then xi = 0
if αi = 1 then xi = a

if αi = −1 then xi = −a









if αi = 0 then xi = 0
if αi = a then xi = a

if αi = −a then xi = −a





We note that since the solution set is zero dimensional (finite number of possible values for
a finite number of variables). This means that the reduced Gröbner Basis for a lexicographic
(elimination) order will have a triangular form [1].

It is important to mention that the variables ai appear in the algebraic system we constructed.
Nevertheless, due to the independence of the solutions with respect to the variables xi from the
variables ai, we can project by choosing random values for the variables ai. There is a finite set of
evaluations of the variables ai that affects the projected variety of the algebraic system. Since we
treat the variables ai as parameters, we are not interested in these evaluations. In other words, by
substituting the variables ai by random values from an infinite set, the part of the solutions of the
system that corresponds to the variables xi remains unchanged with probability 1.

Examples Given a tuple T we apply the algorithm described above to construct an algebraic
system, find a solution to the system and interpret accordingly to construct a new tuple of the
desired type:

split
T = (a, b, a)|(a, b,−a)|(b,−a, b)|(b, d,−b)

T ((a, b, a)|(a, b,−a)|(b,−a, b)|(b, d,−b)) = (1, 5, 6)
T ′ = (x1, b, x2)|(x3, b, x4)|(b, x5, b)|(b, d,−b)




b ∗ x1 + b ∗ x2 + b ∗ x3 + b ∗ x4 + 2 ∗ b ∗ x5,
x1 ∗ x2 + x3 ∗ x4,
x41 − 1, x42 − 1,
x43 − 1, x44 − 1,

x45 − 1,
x2t − 3 ∗ xt + 2,

x21 + x22 + x23 + x24 + x25 + 2 ∗ xt − 5





Solution: α = (i,−1,−1,−i, 1) and xt = 2
Substitution: (x1, x2, x3, x4, x5) = (a,−c,−c,−a, c)
New tuple: (a, b,−c)|(−c, b,−a)|(b, c, b)|(b, d,−b)
T ((a, b,−c)|(−c, b,−a)|(b, c, b)|(b, d,−b)) = (1, 2, 3, 6)

fill expand
T = (0, b, 0)|(0, b, 0)|(b, 0, b)|(b, d,−b)

T ((0, b, 0)|(0, b, 0)|(b, 0, b)|(b, d,−b)) = (1, 6)
T ′ = (x1, b, x2)|(x3, b, x4)|(b, x5, b)|(b, d,−b)




b ∗ x1 + b ∗ x2 + b ∗ x3 + b ∗ x4 + 2 ∗ b ∗ x5,
x1 ∗ x2 + x3 ∗ x4,

(x21 − 1) ∗ x1, (x22 − 1) ∗ x2,
(x23 − 1) ∗ x3, (x24 − 1) ∗ x4,

(x25 − 1) ∗ x5,
x5t − 15 ∗ x4t + 85 ∗ x3t − 225 ∗ x2t + 274 ∗ xt − 120,

x21 + x22 + x23 + x24 + x25 − xt





Solution: α = (1, 1, 1,−1,−1) and xt = 5
Substitution: (x1, x2, x3, x4, x5) = (a, a, a,−a,−a)
New tuple: (a, b, a)|(a, b,−a)|(b,−a, b)|(b, d,−b)
T ((a, b, a)|(a, b,−a)|(b,−a, b)|(b, d,−b)) = (1, 5, 6)

T = (0, b, 0)|(0, b, 0)|(b, 0, b)|(b, d,−b)
T ((0, b, 0)|(0, b, 0)|(b, 0, b)|(b, d,−b)) = (1, 6)
T ′ = (x1, b, x2)|(x3, b, x4)|(b, x5, b)|(b, d,−b)




b ∗ x1 + b ∗ x2 + b ∗ x3 + b ∗ x4 + 2 ∗ b ∗ x5,
x1 ∗ x2 + x3 ∗ x4,

(x1 − d)(x1 + d)x1, (x2 − d)(x2 + d)x2,
(x3 − d)(x3 + d)x3, (x4 − d)(x4 + d)x4,

(x5 − d)(x5 + d)x5, d2 − 1,
x5t − 15 ∗ x4t + 85 ∗ x3t − 225 ∗ x2t + 274 ∗ xt − 120,

x21 + x22 + x23 + x24 + x25 − xt





Solution: α = (1, 1, 1,−1,−1) and xt = 5
Substitution: (x1, x2, x3, x4, x5) = (d, d, d,−d,−d)
New tuple: (d, b, d)|(d, b,−d)|(b,−d, b)|(b, d,−b)
T ((d, b, d)|(d, b,−d)|(b,−d, b)|(b, d,−b)) = (6, 6)
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4 Conclusion

In this paper, we dealt with the problem of constructing new tuples of complementary sequences
from a given tuple of complementary sequences on ` variables, providing an algorithmic version of
the reverse of the Equating-Killing Lemma.

We describe the construction of three algebraic systems, solving the three problems that reverse
the Equating-Killing Lemma, namely split, fill, expand. This construction is algorithmic and
thus, if combined with the use of Gröbner bases, it provides a fully algorithmic framework for the
computation of new tuples of complementary sequences.

We employ Gröbner bases, in order to get a convenient description of the ideal of the (zero
dimensional) variety we are interested in. The variety provides full information concerning the
possible ways to split a variable, fill the zeros or expand a variable in a given k-tuple T of
complementary sequences.

Our goal is to provide an algebraic model for complementary sequences which can be used to
generate orthogonal designs. Conditioned that the algorithmic implementations of the proposed
framework retrieve the desired properties for complementary sequences, our next step is to model
the statistical properties of orthogonal designs (orthogonality, interactions) again in terms of com-
plementary sequences. This statistical modelling of complementary sequences together with the
algorithmic implementations of split, fill, expand, will be further explored in future work.
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Goodness-of-fit testing in Ising Models

Abraham Mart́ın del Campo, Caroline Uhler
IST Austria

abraham.mc@ist.ac.at

Abstract

Markov bases have been developed in algebraic statistics for exact goodness-of-fit testing.
They connect all elements in a fiber (given by the sufficient statistics) and allow building a
Markov chain to approximate the distribution of a test statistic by its posterior distribution.
However, finding a Markov basis is often computationally intractable. In addition, the num-
ber of Markov steps required for converging to the stationary distribution depends on the
connectivity of the sampling space.

We study the combinatorial structure of the finite lattice Ising model and propose a new
method for exact goodness of fit testing which avoids computing a Markov basis. Instead, we
build a Markov chain that only uses simple moves (i.e. swaps of two interior sites). These
simple moves are not sufficient to create a connected Markov chain. However, by allowing
a bounded change in the sufficient statistics, we prove that the resulting Markov chain is
indeed connected, reversible, and aperiodic. The proposed algorithm not only overcomes the
computational burden of finding a Markov basis, it might also lead to a better connectivity of
the sampling space and hence a faster convergence.

Keywords
Ising model, Monte Carlo methods, Markov chains
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Monomial ideal methods for hierarchical statistical models
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Abstract

A hierarchical statistical model can be associated with a simplicial complex S in the fol-
lowing way. To every vertex i of S we associate an input, or independent variable: x =
(x1, . . . , xn). To a simplex J of S we associate a function of the variables xJ = {xi, i ∈ J},
which we write hJ (xJ). There are two types of model which are naturally associated with
this set-up. The first is a model for the mean of a dependent random variable Y of the form
µ =

∑
J∈S hJ (xJ). For example, if n = 3 and the cliques are {1, 2} and {2, 3} we have

the model µY = h0 + h1(x1) + h2(x2) + h1,2(x1, x2) + h2,3(x2, x3). In the second case we
have an exponential model for a multinomial probability, or distribution, attached to a sup-
port: p(x) = exp

(∑
J∈S hJ (xJ)

)
. If we introduce parameters θJ then we write for the model

part
∑

J∈S θJhJ (xJ). Then, in the first case we have a linear regression model for the mean
of the random and in the second case a log-linear model with a natural exponential family
representation [1].

We are interested, in both cases, in the relationship between the structure of the model as
given by S and the Stanley Reisner ideal IS of S . This is generated by all square-free monomials
corresponding to terms not in the model. In the above example this is just 〈x1x3〉, because
{1, 3} /∈ S . In the regression case IS gives important information about the interactions and
so-called alias structure of the model, with strong links to the theory of experimental design
[2]. In the probability model case IS can be used to capture the conditional independent
structure. An important example is when S is the flag complex of a decomposable models and
the Dirac theorem describes IS , rather precisely [3]. In general, several important features of
the ideal IS , such as Krull dimension, Betti numbers, Hilbert series and Alexander duality,
have implications for the modelling.

By considering different functions (kernels) hJ (xJ) we can cover hierarchical modeling for
a wide range of situations.
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monomial ideals, hierarchical models, algebraic statistics
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Algebraic geometry in causal inference
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Abstract

Many algorithms for inferring causality are based on partial correlation testing and rely
heavily on the strong-faithfulness assumption. In the Gaussian setting, the set of strong-
unfaithful distributions corresponds to a collection of fattened-up hypersurfaces, which are
defined by partial correlations. Interestingly, as we explain in this talk, the volume of the
strong-unfaithful distributions depends on the complexity of the singularities (measured by
their real log canonical threshold) of the defining hypersurfaces. Studying these hypersurfaces,
we show that the strong-faithfulness assumption is extremely restrictive, implying fundamental
limitations for causal inference algorithms based on partial correlations, with the PC-algorithm
as its most prominent example.

In the second part of the talk, we propose an alternative algorithm, which is based on
finding the permutation of the variables that yields the sparsest directed acyclic graph. In the
Gaussian setting, this algorithm boils down to finding the sparsest Cholesky decomposition
of a matrix. We prove that the constraints required for our algorithm are strictly weaker
than strong-faithfulness and are necessary for any causal inference algorithm based on partial
correlation testing.

Keywords
Causal inference, directed Gaussian graphical model, partial correlation testing, algebraic

hypersurface, real singularity, sparse Cholesky decomposition
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Connectivity on two-way tables under certain models
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Abstract

We first consider the two-way contingency tables under several different models, namely,
the diagonal model, the independence model with cell upper bounds and with structural zeros,
and the quasi-independence model. Then we showed that if we allow each cell to be −1, then
2×2 minor basic moves connect all tables in a fiber under each model. In the end we proposed
an algorithm to connect all tables in a fiber under a given model by moves in a subset of a
Markov basis for the model by allowing each cell to be −1 in a general set up.

Keywords
Basic moves, contingency tables, Markov bases

We consider two-way tables under various models. Let r, c ≥ 2 and r, c ∈ Z. Let I be an index
set, i.e.

I = {(i, j) : 1 ≤ i ≤ r, 1 ≤ j ≤ c}.
Here we consider a two way r × c contingency table X = (nij)(i,j)∈I and we consider the several
models such as

• Diagonal models

• Independence model with cell upper bounds

• The structural zero problem

• The quasi-independence model.

We first define a “basic move”.

Definition 1 Let b be a r × c table such that

j j′

i 1 −1
i′ −1 1

where 1 ≤ i, i′ ≤ r, 1 ≤ j, j′ ≤ c, i 6= i′, j 6= j′ and other cells are all zero. We call ±b a basic
move. We denote this table b as (i, i′; j, j′).

Let M be a set of all basic moves.
First consider the independence model. Let {Xij} be a table of counts whose entries are inde-

pendent geometric random variables with canonical parameters, {θij}. Consider the generalized
linear model,

θij = λ+ λRi + λCj (1)

for i = 1, . . . , r and j = 1, . . . , c, where R and C denote the nominal-scale row and column
factors. Notice that the row and column margins are sufficient statistics for this model. Hence,
the conditional distribution of the table counts given the margins is the same regardless of the
values of the parameters in the model. We consider bind as a column vector with dimension r+ c.
We also order the elements of X with respect to a lexicographic order and regard X as a column
vector with dimension |I|. Then the relation between X and bind is written by

AindX = bind, (2)

263



which represents the system of equations for the row and column sums. Here Aind is an (r+c)×|I|
matrix consisting of 0’s and 1’s. In general such matrix which defines the system of equalities for
the sufficient statistics is called design matrix. The set of tables X ∈ NI satisfying (2) is called the
fiber for bind and is denoted by Find(bind) such that

Find(bind) = {X ∈ NI |AindX = bind}.
The following theorem is fairly well-known:

Theorem 2 ([5]) All moves in M connect all two-way contingency tables under the independence
model Find(bind) for any bind with Find(bind) 6= ∅.

The idea of allowing some entries to drop down to −1 appears in [1] and [3]. In high-dimensional
tables (r + c large), the enlarged state space that allows entries to drop down to −1 may be
much larger than the set of interest Fn, even though each dimension is only slightly extended.
Nevertheless, in this paper, we consider several different models for two-way contingency table and
we show the connectivity of the tables under each model by moves in M by allowing some entries
to drop down to −1.

1 Models

In this section we define models we consider. Now, let {Xij} be a table of counts whose entries
are independent geometric random variables with canonical parameters, {θij}. The most general
loglinear association model for an r × c contingency table has a canonical linear predictor of the
form

θij = λ+ λRi + λCj + λRC
ij (3)

for i = 1, . . . , r and j = 1, . . . , c.

1.1 Diagonal model

The diagonal model is a model with extra constraints to the Independence model such that λRC
ij = 0

if i 6= j and λRC
ii = λ, association models. Under this model, the sufficient statistic consists of the

row sums, column sums and the sum of the diagonal frequencies:

xi+ =

c∑

j=1

xij , i = 1, . . . , r, x+j =

r∑

i=1

xij , j = 1, . . . , c, xD =

min(r,c)∑

i=1

xii.

We write the sufficient statistic as a column vector

bD = (x1+, . . . , xr+, x+1, . . . , x+c, xD)′.

We also order the elements of x lexicographically and regard x as a column vector. Then the
relation between X and bD is written by

ADX = bD, (4)

which represents the system of equations for the row and column sums, and the diagonal sum.
Here AD is an (r+ c+ 1)×|I| matrix consisting of 0’s and 1’s. The set of tables X ∈ NI satisfying
(4) is denoted by FD(bD) such that

FD(bD) = {X ∈ NI |ADX = bD}.

1.2 Independence model with cell upper bounds

This is a model with extra constraints to the Independence model such that each cell count Xij

for (i, j) ∈ I has an upper bound. Thus we have the system of equations

AindX = bind, 0 ≤ Xi,j ≤ U(i,j), (i, j) ∈ I (5)

which represents the system of equations for the row and column sums, and constraints for the
upper bounds U(i,j). The set of tables X ∈ NI satisfying (5) is denoted by Fbdd(bind) such that

Fbdd(bind) = {X ∈ NI |AindX = bind, 0 ≤ Xi,j ≤ U(i,j), (i, j) ∈ I}.
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1.3 Structural zero problem

Consider the independence model for two way contingency tables. Structural zeros are a subset S
of I such that the probability to see an observation for (i, j) ∈ S is equal to zero. In fact this is a
special case of the independence model with upper bounds such that U(i,j) = 0 for (i, j) ∈ S.

1.4 Quasi-independence model

In the quasi-independence model, the cell probabilities {pij} are modeled as

log pij = λ+ λRi + λCj + γiδij , (6)

where δij is Kronecker’s delta. In (6) each diagonal cell (i, i), i = 1, . . . ,min(r, c), has its own
free parameter γi. This implies that in the maximum likelihood estimation each diagonal cell is
perfectly fitted:

p̂ii =
xii
n
,

where n =
∑R

i=1

∑C
j=1 xij is the total frequency. Since diagonal elements in each sampled table are

fixed, we proceed the following process in order to sample a table under the quasi-independence
model: (1) Suppose x = (x11, x12, . . . , xrc) is the observed table. Suppose (WLOG) r ≤ c. We set
a column vector

bQ = (x1+ − x11, . . . , xr+ − xrr, x+1 − x11, . . . , x+r − xrr, x+(r+1), . . . , x+c)
′.

Then the relation between X and bQ is written by

AQX = bQ, (7)

which represents the system of equations for the row and column sums, and the diagonal sum.
Here AQ is an (r + c) × |I| matrix consisting of 0’s and 1’s. The set of tables X ∈ NI satisfying
(7) is denoted by FQ(bQ) such that

FQ(bQ) = {X ∈ NI |AQX = bQ, Xii = 0, for i = 1, . . . , r}.

(2) Sample a table X from the fiber FQ(bQ). (3) Set Xii = xii for i = 1, . . . , r. Thus, this is a
special case of the independence model with upper bounds such that U(i,i) = 0 for i = 1, . . . , r.

2 Markov basis and connectivity of tables

We will use the following simple observation to prove the connectivity of tables by basic moves in
M .

Remark 3 Suppose m = m+ −m−, where m+,m− ∈ Z|I|+ , is an element in a Markov basis for
the contingency table under a certain model and if we can write

m+ = m− +

k∑

i=1

±bi for some k

where bi ∈M and

m− +

k0∑

i=1

±bi

has its elements greater than equal to −1 for all 0 ≤ k0 ≤ k. If we can show this for all m in a
Markov basis we can show that moves in M connect to all tables in the fiber for the given model.

2.1 Diagonal model

In order to describe a Markov basis for the diagonal sum problem, we introduce three additional
types of moves.
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• Type II (indispensable moves of degree 3 for min(r, c) ≥ 3):

i i′ i′′

i 0 +1 −1
i′ −1 0 +1
i′′ +1 −1 0

where three zeros are on the diagonal.

• Type III (dispensable moves of degree 3 for min(r, c) ≥ 3):

i i′ i′′

i +1 0 −1
i′ 0 −1 +1
i′′ −1 +1 0

Note that given three distinct indices i, i′, i′′, there are three moves in the same fiber:

+1 0 −1
0 −1 +1
−1 +1 0

+1 −1 0
−1 0 +1
0 +1 −1

0 −1 +1
−1 +1 0
+1 0 −1

Any two of these suffice for the connectivity of the fiber. Therefore we can choose any two
moves in this fiber for minimality of Markov basis.

• Type IV (indispensable moves of degree 4 which are non-square free):

j j′ j′′

i +1 +1 −2
i′ −1 −1 +2

where i = j and i′ = j′, i.e., two cells are on the diagonal. Note that we also include the
transpose of this type as Type IV moves.

• Type V: (square free indispensable move of degree 4 for max(r, c) ≥ 4):

j j′ j′′ j′′′′

i +1 +1 −1 −1
i′ −1 −1 +1 +1

where i = j and i′ = j′. Type V includes the transpose of this type.

Then we have the following theorem:

Theorem 4 ([6]) The above moves of basic moves in M and Types II-V form a Markov basis for
the diagonal sum problem with min(r, c) ≥ 3 and max(r, c) ≥ 4.

By the theorem above and Remark 3 we have the following theorem:

Theorem 5 Consider a two way r× c contingency table Xij and we consider the diagonal model.
If we allow Xij ≥ −1, then all moves in M connect all tables in FD(bD).

2.2 Independence model with cell upper bounds

In 2010, Rapallo and Yoshida showed a Markov basis for this model.

Theorem 6 (Rapallo and RY, 2010) Moves of Type II and moves in M form a Markov basis for
the independence model with cell upper bounds, i.e., xij ≤ Uij, (i, j) ∈ I.

Using this theorem and Remark 3 we have the following theorem

Theorem 7 Consider a two way r × c contingency table Xij and we consider the independence
model with cell upper bounds. If we allow Xij ≥ −1, then all moves in M connect all tables in
Fbdd(bind).

Remark 8 Since the quasi-independence model and structural zero are special case of this model.
This basic moves in M also connects all tables in the fiber under the quasi-independence model and
structural zero.
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3 More general set up for arbitrary models

In this section we consider more general set up, i.e., we consider arbitrary multi-way contingency
tables under an arbitrary model. In 2008, Chen, Dinwoodie, and Yoshida [2] suggested the following
algorithm to connect all tables in the fiber by moves in a subset M of a Markov basis. Let A ∈ Zn×d

be a design matrix and let IA be a toric ideal associate with the matrix A (see [7] for the definition
of the toric ideal IA). Let Fb be the fiber under the model for the sufficient statistics b.

When one allows entries in the table to go negative, connecting Markov chains are easier to
find. The following proposition uses some standard terminology. Let M := {±ai ∈ Zd} : i =
1, . . . , g} ⊂ ker(A) be signed Markov moves (that is, integer vectors in ker(A) that are added
or subtracted randomly from the current state), not necessarily a Markov basis. Let IM :=

〈xa+
i − xa−

i , i = 1, . . . , g〉 be the corresponding ideal, which satisfies IM ⊂ IA. The radical of an
ideal I is

√
I = {f ∈ Q[x] : f i ∈ I for some i ∈ Z+}. If I =

√
I, then we say that I is a radical

ideal (p. 35 of [4]).
A set of integer vectors M ⊂ Zc is called a lattice basis for A if every integer vector in ker(A)

can be written as an integral linear combination of the vectors (or moves) in M . Computing a
lattice basis is very simple and does not require symbolic computation.

Proposition 9 ([2]) Suppose IM is a radical ideal, and suppose the moves in M form a lattice
basis. Then the Markov chain using the moves in M that allows entries to drop down to −1
connects a set that includes the set Fb.

Proposition 9 makes it possible to use the following approach on large tables: compute a lattice
basis, compute the radical of the ideal of binomials from the lattice basis, run the Markov chain
in the larger state space, and do computations on Fb by conditioning. To be precise, suppose
Fb ⊂ F0 where the set F0 is the connected component of the Markov chain that is allowed to drop
down to −1 as above. Suppose the desired sampling distribution µ on Fb is uniform. If one runs a
symmetric Markov chain X1, X2, X3, . . . , Xn in F0, then a Monte Carlo estimate of µ(F ) for any
subset F ⊂ Fb is

µ(F ) =

∑n
i=1 IF (Xi)∑n
i=1 IFb

(Xi)

where IF is the indicator function of the set A.
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Abstract

The issue of description of the entanglement space E2, i.e., the orbit space P+/G , where
P+ - the space of mixed states of pair of qubits, G = U(2) ⊗ U(2) - the group of so-called
local unitary transformations, is discussed. Within the geometrical invariant theory, using
the integrity basis for the ring of G-invariant polynomials, the derivation of equations and
inequalities that determine the entanglement space E2 are outlined.

Keywords
Quantum computation, density matrix, entanglement, orbit space, local invariants, polynomial

inequalities

1 Quantum non-localities and orbit space

A motivation to study the orbits space P+/G for d-dimensional r-partite quantum system is as
follows. A state % ∈ P+ , characterizing a composite quantum system is an element of the tensor
product of Hilbert-Schmidt spaces of operators corresponding to each r individual subsystem.
In accordance with a fixed factorization d = n1 × n2 × · · · × nr, the Local Unitary (LU) group,
G = U(n1)⊗· · ·⊗U(nr) acts on P+ in non-transitive way. This circumstance causes a stratification
of P+ , reflecting a diversity of non-local properties the system exposes. Classes of the equivalence
with respect to the LU transformations form the so-called entanglement space, the factor space:

E =
Space of states

Group of LU transformations
.

Thus characterization and classification of a quantum system non-locality reduces mainly to a
classical mathematical problem - description of the orbit space of compact Lie groups.

2 Recipe for the orbit space description

The orbit space of a compact Lie group action on a linear space can be described in the framework
of the invariant theory within the direction initiated by Processi and Schwarz [1, 2].

Consider the compact Lie group G acting linearly on the real d-dimensional vector space V
and let R[V ]G is the corresponding ring of the G-invariant polynomials on V . Assume P =
(p1, p2, . . . , pq) is a set of homogeneous polynomials that form the integrity basis, R[x1, x2, . . . , xd]G =
R[p1, p2, . . . , pq]. Elements of the integrity basis define the polynomial mapping:

p : V → Rq ; (x1, x2, . . . , xd)→ (p1, p2, . . . , pq) .

Since p is constant on the orbits of G it induces a homeomorphism of the orbit space V/G and the
image X of p-mapping; V/G ' X [3]. In order to describe X in terms of P uniquely, it is necessary
to take into account the syzygy ideal of P, i.e.,

IP = {h ∈ R[y1, y2, . . . , yq] : h(p1, p2, . . . , pq) = 0 , in R[V ] }.
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Let Z ⊆ Rq denote the locus of common zeros of all elements of IP , then Z is algebraic subset of
Rq such that X ⊆ Z . Denoting by R[Z] the restriction of R[y1, y2, . . . , yq] to Z one can easily verify
that R[Z] is isomorphic to the quotient R[y1, y2, . . . , yq]/IP and thus R[Z] ' R[V ]G . Therefore the
subset Z essentially is determined by R[V ]G, but to describe X the further steps are required.
According to [1, 2] the necessary information on X is encoded in the structure of q× q matrix with
elements given by the inner products of gradients, grad(pi) :

||Grad||ij = (grad (pi) , grad (pj)) .

Summarizing these observations, the orbit space is identified with the semi-algebraic variety,
defined as points, satisfying two conditions:

a) z ∈ Z, where Z is the surface defined by the syzygy ideal for the integrity basis of R[V ]G;

b) Grad(z) > 0 .

3 Describing the entanglement space E2

The general scheme sketched above has been applied to the analyzes of a 4-dimensional bipartite
quantum system with partition, n1 = n2 = 2 , i.e., a pair of qubits.

To make Procesi-Schwarz method applicable we linearize at first the adjoint action of U(2)⊗U(2)
group on the space H4×4 of 4× 4 Hermitian matrices:

(Ad g )% = g % g−1 , g ∈ U(2)⊗U(2) , (1)

by the mapping H4×4 → R16; %→ v = (v1, v2, . . . , v16) and considering on R16 the linear represen-
tation

v′ = Lv , L ∈ U(2)⊗U(2)⊗U(2)⊗U(2) ,

where a line over expression means the complex conjugation. Further using the integrity basis for
R[v]U(2)⊗U(2) , suggested in [4]-[7] one can pass to the analysis of the semi-positivity of the Grad-
matrix and determine the set of inequalities defining the orbit space R16/U(2)⊗U(2) . However, this
is not the end of a story. The orbit space defined in this manner is not the space of entanglement,
namely E2 ⊆ R16/U(2) ⊗ U(2). Indeed, due to the non-negativity of density matrices the space
of physical states is P+ ⊂ R15 defining by a further set of constraints on elements of integrity
basis (see e.g. [7]). Concluding it is worth to stress that analysis of the relevant geometry of
E2 , determining via a complete set of polynomial inequalities in LU invariants, including both,
mentioned here, as well as arising from the semi-positivity conditions on the density matrix of 2
-qubits, represents a non-trivial mathematical problem and has highly important consequences for
quantum information theory and quantum computing.

4 Computational issues

To derive the inequalities in the LU invariants determining the orbit space R16/U(2)⊗ U(2) , one
has first to express the entries of Grad-matrix in terms of the invariants and then compute its
Smith normal form. For the last computation we are going to try recent algorithms [8] and their
implementation in Maple. Unlike all previously known algorithms for reduction of a matrix to
the Smith normal form, the algorithms of paper [8] may work when the entries of a matrix are
multivariate polynomials. The ring of such polynomials is not Euclidean (i.e., not principal ideal)
domain that is at the basis of all other algorithms.
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Abstract

In papers [1, 2, 3] we presented our Mathematica package QuantumCircuit for simulation
of quantum computation based on the circuit model [4]. The package provides a user-friendly
interface to specify a quantum circuit, to draw it, and to construct the corresponding unitary
matrix for quantum computation defined by the circuit. Using this matrix, one can find the
final state of the quantum memory register by its given initial state and to check the operation
of the algorithm determined by the quantum circuit.

Here we present an application of the package QuantumCircuit to simulation of quantum
circuits implementing such well-known quantum algorithm as the Shor algorithm for integer
factorization. Besides, we analyze some examples of the circuits used for quantum error
correction and entanglement simulation. The main purpose of the talk is to demonstrate
that a proper extension of such powerful software system as Mathematica in order to simulate
quantum circuits helps to better understanding of fundamental and applied aspects of quantum
computation.

Keywords
Quantum computation, Mathematica simulator, circuit model, quantum algorithms, quantum

error correction, entanglement
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Abstract

Symbolic algebra packages, such as Mathematica, provide a versatile framework to study
a number of problems in quantum mechanics. They are particularly suited to study quantum
problems where only a small number of qubits participate. We will describe the main ingre-
dients of our Mathematica packages, QDENSITY [1] and QCWAVE [2], which can be used
to simulate a number of well-known quantum circuits such as teleportation circuits, Grover’s
search algorithms and others. Aplications to quantum correction circuits and cluster state
quantum computation will be outlined.
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Burdis, and F. Tabakin, Comp. Phys. Comms, 174, 914 (2005).

[2] QCWAVE, a Mathematica quantum computer simulation update, F. Tabakin, B. Julia-
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Abstract

We develop a framework which aims to simplify the analysis of quantum states and quan-
tum operations by harnessing the potential of function programming paradigm. We show that
the introduced framework allows a seamless manipulation of quantum channels, in particular
to convert between different representations of quantum channels, and thus that the use of
functional programming concepts facilitates the manipulation of abstract objects used in the
language of quantum theory.

For the purpose of our presentation we will use Mathematica computer algebra system.
This choice is motivated twofold. First, it offers a rich programming language based on the
functional paradigm. Second, this programming language is combined with powerful symbolic
and numeric manipulation capabilities.

Keywords
quantum channels, functional programming, scientific computing

1 Introduction

Functional programming is frequently seen as an attractive alternative to the traditional methods
used in scientific computing, which are based mainly on the imperative programming paradigm [3].
Among the features of functional languages which make them suitable for the use in this area is
the easiness of execution of the functional code in the parallel environments.

The main aim of this work is to show that the functional programming concepts facilitate
the use of abstract objects used in the language of quantum theory. We develop a framework
which aims to simplify the analysis of quantum states and quantum operations by harnessing the
potential of functional programming paradigm. For the purpose of our presentation we will use
Mathematica computer algebra system. This choice is motivated twofold. First, it offers a rich
programming language based on the functional paradigm. Second, this programming language is
combined with powerful symbolic and numeric manipulation capabilities.

During the last few years a number of simulators of quantum information processing has been
developed using Mathematica computing system [8, 5, 7, 2]. Unfortunately, these packages do not
use functional programming capabilities of this system and are focused on pure states and unitary
operations. Moreover, they focus on the quantum mechanical systems which can be represented
using state vectors and include only a basic functionality required for the purpose of manipulating
and analyzing quantum states.

In this paper we follow the pragmatic approach and we provide a set of useful constructions
which can be helpful for the analysis of quantum channels. At the same time we advocate the use of
functional programming in this approach. We argue that by using the functional language elements
provided by Mathematica one can easily and efficiently convert between different representations
of quantum channels.
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2 Functional syntax for quantum channels

2.1 Notation

In the following we assume that the quantum systems are represented by finite-dimensional density
matrices, i.e. positive semidefinite complex matrices with unit trace. The space of density matrices
of dimension d is denoted by Ωd. We use res, unres operations [6] for converting between matrix
and vector forms of states and operators. In the Mathematica language function res is defined as
a synonym for a built-in function Flatten

Res = Function[m, Flatten[m]];

This function transforms a matrix m into a vector in a row order. Function unres, which is a
reverse transformation, is defined in Mathematica as

Unres = Function[m, Partition[m, Sqrt[Length[m]]]];

and it uses built-in function Partition to get back from a one-dimensional list to a matrix.
As the space of density matrices is unitary with Hilbert-Schmidt scalar product, we introduce a
function

HSInner = Function[x, Function[y, Tr[x.ConjugateTranspose[y]]]];

which, thanks to the curried form, allows using a partial application in the application of this
scalar product.

Unfortunately Mathematica does not provide a straightforward support for the partial applica-
tion of functions. The language does not allow using functions with too few parameters and one
has to explicitly use empty slots (#-signs) to define a partially applied function. For this reason in
order to use the functional version of some procedures, it is necessary to provide a curried version
of these functions.

2.2 Simple channels

Let us illustrate the above considerations with the simplest example – the transposition map. This
map is defined as

ρ 7→ ρT , (1)

and can be expressed in Mathematica as

trans = Function[x, Transpose[x]]

or using more compact syntax as trans = Transpose[#]&.
One should note that this map is not completely positive, hence it does not represent a valid

quantum channel. Nevertheless, it is useful for presenting basic transformations which can be
performed on quantum channels.

If we would like to apply this function on some state ρ we simply write trans[ρ]. In many
situations however, one needs to apply a map on a list rhos of states or matrices. In this case we
simply map the functions representing the map on the list using Map function as

Map[trans, rhos]

or using more compact syntax as trans /@ rhos.

2.3 Channels with parameters

In order to use channels defined by parametrized expression, one can employ partially applied
functions. The simplest example of such channels is a depolarizing channel ΨD(p,d) defined as

ΨD(p,d)(ρ) = (1− p)ρ+ p
1

n
1n, (2)

where we assume that ρ ∈Mn and 1n denotes the identity matrix of the appropriate size.
Using the notation introduced in Section ??, this channel can be represented by a function

dep = Function[d, Function[p, Function[x,
(1-p)x + p IdentityMatrix[d]/d

]]];

277



Here we follow the convention that the function parameters should be organized in such a way, that
by providing all but one of them, we obtain a function accepting quantum state as an argument. In
the above case the first two parameters represent the dimension and the reliability of the channel
(the probability of introducing no errors).

Function dep requires three arguments and its application on state ρ is achieved by first
declaring the instance of the channel for a fixed dimension (e.g d=4)

dep4 = dep[4];

and next using this function with a specific probability p

dep4[p][ρ];

However, one can use dep function to define the expression in which only two arguments are
provided

g = (dep[#1][p][#2]) &

and this allows obtaining a general definition of the depolarizing channel with a fixed parameter
p, identical to the following definition

Function[d, Function[x, (1-p) x + p IdentityMatrix[d]/d]];

Function g accepts two arguments representing the dimension and the input state. Its appli-
cation on some state ρ ∈M4 reads

g[4][ρ];

and this syntax allows the selection of an argument which should be fixed during the manipulation.

3 Representations of quantum channels

3.1 Natural representation

As channels are linear mappings, it is possible, at least in finite-dimensional case, to represent
them by matrices. Let us assume that we are dealing with d = n× n dimensional matrices.

The base in n2-dimensional space Mn is given by matrices, which can be obtained by using
Unres operations on the base vectors in the d-dimensional space Cd, d = n2, as

base = Map[Unres[UnitVector[d, #]] &, Range[d]];

where Range[d] returns a list containing numbers 1, 2, . . . , d. In the following we assume that
the d-dimensional matrix base can be obtained using function BaseMatrices[d] defined as

BaseMatrices = Function[d, Map[Unres[UnitVector[d, #]] &, Range[d]]];

If the list fBase contains the images of the quantum channel f on the base

fBase = f /@ base

then the natural representation can be calculated by unreshaping the images of the map on the
base matrices in Md2 ,

{Res /@ fBase}

Combining this into one function gives

NaturalRepresentation = Function[f, Function[d,
With[{base=BaseMatrices[dˆ2]}, Map[Res[f[#]]&, base]]

];

We denote the natural representation of the channel Φ by MΦ, assuming that this matrix is
obtained in the standard basis. Matrix MΦ is sometimes called a supermatrix for the channel Φ.

The above considerations can be summarized as the following definition.

Definition 1 (Natural representation) For a given channel Ψ, the natural representation of
Φ by MΦ is defined as

(MΦ)i. = res Φ(bi) (3)

where (A)i. denotes i-th column of the matrix A and bi, i = 1, n2 denotes base matrices in Mn.
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For example, in order to obtain the matrix representation of the depolarizing channel dep
acting on one qubit, one should use NaturalRepresentation function as

NaturalRepresentation[dep[2][p]][2]

In a similar manner one can check that the natural representation of the one-qubit transposition
channel trans

NaturalRepresentation[trans][2]

is equal to the SWAP gate.

3.2 General natural representation

Clearly one can represent a given channel in a matrix form using not only a canonical base, but
any orthonormal basis in Cn2

. In this situation one cannot use the method described above as it
relies on the special form of the canonical base matrices.

The straightforward method of calculating a matrix representation, is based on the formula

(M b
Φ)ij = tr[biΦ(bj)

†], (4)

where bi, i = 1, . . . , n2 denotes the base.

Definition 2 (General natural representation) For a given channel Ψ, the general natural
representation of Φ in base b is defined as

(Mb
Φ)ij = tr[Φ(bi)b

†
j ], (5)

where bi, i = 1, n2 denote base matrices in Mn.

This definition can be implemented using Outer function as

Function[f, Function[b,
Outer[HSInner[#1][#2]&, Map[f,b], b, 1]

]];

where base is a given base or, alternatively, by using Map function as

Function[f, Function[b,
Map[Map[#, b] &, Map[HSInner, Map[f, b]]]

]];

This method requires n4 multiplications of n× n matrices and is highly inefficient.
The simplest method is to reconstruct a change of basis matrix MB ,

MB = Map[Res, b]

and use it to obtain M b
Φ as

M b
Φ = MBMΦM

†
B . (6)

3.3 Choi-Jamio lkowski representation

Complete positivity, one of the requirements for the map between finite-dimensional spaces can
be formulated using Choi-Jamiolkowski representation of a map [4, 1]. This representation in the
context of quantum channels is known as Jamiolkowski isomorphism and here the image of this
isomorphism is denoted as JΦ.

The Choi-Jamiolkowski representation is closely related to the natural representation. The
natural representation of the channel acting on n×n-dimensional matrices is always obtained with
respect to some bases {bi}i=1,n2 , where n2 is the dimension of the state space.

If one uses base bi to obtain the natural representation of the channel Φ resulting in matrix
M b

Φ, then the Choi-Jamiolkowski matrix for this channel is obtained as

{J b
Φ}i,j = tr[M b

Φ(bi ⊗ bj)], (7)

for i, j = 1, n2.
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Definition 3 (Choi-Jamiolkowski matrix) Let {bi} be a base in Cn2

. The Choi-Jamiolkowski
matrix corresponding to a general natural representation in base {bi} is defined as

{J b
Φ}i,j = tr[M b

Φ(bi ⊗ bj)]. (8)

The Choi-Jamiolkowski representation of the channel Φ can be also obtained using several other
methods. One of the simplest formulas is the one expressing JΦ as a sum

JΦ =

d∑

i=1

Φ(ei)⊗ ei. (9)

Assuming that base represents matrix base in d-dimensional space, this representation can be
used by mapping

cjBase = Map[KroneckerProduct[f[#], #] &, base]

and accumulating the results

Plus /@ cjBase

Combining the above into one function gives

ChoiJamiolkowskiRepresentation = Function[f, Function[d,
With[{base=BaseMatrices[d]},

Map[Plus,[Map[KroneckerProduct[f[#],#]&, base]]]
]];

The Choi-Jamiolkowski representation of a channel is related to the natural representation,
one can easily construct a Choi-Jamiolkowski matrix corresponding to a given generalized natural
representation.
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Abstract

Various limits to squeezing of quantum fluctuations below the vacuum level (still being a hot
topic in such areas as detection of gravitational waves via high-precision optical interferometry,
quantum non-demolition measurements, high-resolution spectroscopy, and low-noise optical
communication systems) are analyzed and discussed.

Problems related to the optimum level of the above-mentioned quantum noise reduction for
finite superpositions of orthonormal basis-states of quantum harmonic oscillator are thoroughly
investigated. An explicit construction of states leading to maximum degree of squeezing is
provided and both exact and approximate expressions for minimum variances of position and
momentum operators are given. Using some analytical tools offered by computer algebra
software new properties of such quantum states are discovered. Possible applications of the
obtained results to quantum optics and quantum information are also elaborated.

As a by-product, new interesting properties of some classic orthogonal functions, especially
an interesting behavior of zeros of properly rescaled Hermite polynomials, are obtained.

Keywords
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Abstract

Quantum computing and quantum information are well known to be very hot interdis-
ciplinary fields, where a number of approaches have been taken. Among those, geometric
methods are known to be of good use. This short paper is a direct continuation of a paper
by the author [Y.Uwano, Search Algorithms for Engineering Optimization (T.Abrão ed., In-
Tech Press, Rijeka, 2013), pp.261-284] on a geometric study on the Grover-type search for
an ordered tuple of multi-qubits: A classification of geodesics in the space of ordered tuples
of multi-qubits is made according to which of those reduce to the geodesics in the quantum
information space with respect to the mixture, the exponential and the Levi-Civita parallel
transports. Computer algebra applicability to this problem is mentioned of also from the view
point of matrix algebra.

Keywords
Quantum information space, Geodesics, Search algorithm

1 Introduction

Quantum computing and quantum information have been a pair of the most challenging research
subjects [1] in recent decades, to which a number of disciplines have been applied. From geometry
viewpoint, the work of Miyake and Wadati [2] in 2001 is well known which provides a clear geometric
characterization of Grover’s celebrated search algorithm for a single target [3]: In the paper [2],
the Grover search sequence in 2n data is shown to be on a geodesic in (2n+1 − 1)-dimensional

sphere S2n+1−1. Further, through a geometric reduction of S2n+1−1 to the complex projective
space CP 2n−1, the search sequence is projected to a sequence in CP 2n−1, that is shown to be on
a geodesic in CP 2n−1.

Motivated by the paper [2], the author constructed a Grover-type search algorithm for an
ordered tuple of multi-qubits [4]. A geometric reduction different from that in [2] is applied to the
extended space of ordered tuples of multi-qubits (ESOT),

M1(2n, `) = {Φ ∈ M(2n, `) | 1
`

trace Φ†Φ = 1}, (1)

where M(2n, `) denotes the set of 2n × ` complex matrices and † stands for the adjoint operation.
The geometric reduction in [4] is made through the projection

π(n,l) : Φ ∈ M1(2n, `) 7→ 1

`
Φ†Φ ∈ P` (2)

with

P` = {ρ ∈ M(`, `) | ρ : positive semidefinite, ρ† = ρ, trace ρ = 1}, (3)

where M(`, `) denotes the set of ` × ` complex matrices. The P` is well known to be the space
of density matrices of degree-`, which plays a central role in quantum information theory [5].
Through the reduction process, the QIS can be endowed with a Riemannian metric that makes
the projection π(n,l) a Riemannian submersion. Surprisingly, the Riemannian metric thus endowed
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is shown to coincide with the SLD-Fisher metric up to a constant multiple [4], so that the QIS
with the SLD-Fisher metric is obtained as a natural outcome of the ESOT with the standard
Riemannian metric through the geometric reduction.

A geometric characterization of the Grover-type search sequence in the ESOT and its reduction
in the QIS is made in another paper [6] by the author, where geodesics in the ESOT/QIS are defined
as autoparallel curves with respect to parallel transports fixed to the ESOT/QIS, respectively. It is
shown in [6] that the search sequence in the ESOT is on a geodesic with respect to the Levi-Civita
parallel transport for the standard metric and that the reduced search sequence in the QIS is on
a geodesic with respect to the mixture parallel transport. Since three parallel transports, viz the
mixture (m-), the exponential (e-) and the Levi-Civita (LC) parallel transport, in the QIS are said
to be crucial in quantum information geometry [5], it is interesting to classify the geodesics in the
ESOT according to which of those are reduced to the geodesics in the QIS with respect to the m-,
the e- and the LC parallel transport. Note that the LC parallel transport is associated with the
SLD-Fisher metric, a crucial metric in quantum information geometry.

As a direct continuation of the paper [6], this short paper aims to report briefly a classification
of geodesics in the ESOT according to which of those can be reduced to the geodesics with respect
to the m-parallel transport, those to the LC parallel transport and otherwise. Section 2 is a
preliminary section, where the geometric reduction to be applied [4, 6] and the geodesics in the
ESOT [6] are concisely reviewed. Section 3 presents the classification of the geodesics in the ESOT.
In subsection 3.1, the geodesics in the ESOT reducible to the LC geodesics in the QIS are identified.
The horizontal condition given in Sec. 2 for curves in the ESOT plays a key role. Subsection 3.2
deals with the geodesics in the ESOT reducible to the m-geodesics in the QIS. In contrast with
subsection 3.1, the vertical condition given in Sec. 2 for tangent vectors of the QIS plays a key
role. Subsection 3.3 is for concluding remarks including an applicability of computer algebra to
the present classification problem.

As another application of [4], a pair of papers by the author exist on the gradient-equation
realization in the QIS of the Karmarkar flow and of the Hebb-type learning equation [7, 8].

2 Preliminaries

We here give a very concise review of the geometric reduction of the ESOT given by (1) to the QIS
given by (3). To ensure the validity of differential calculus, the regular parts of them, denoted by
Ṁ1(2n, `) and Ṗ`, will be often considered also, which consist of the matrices of rank ` in M1(2n, `)
and of positive definite matrices in P`, respectively (see [4, 6, 7, 8]). A key to the reduction is the
(stratified) fibered manifold structure of M1(2n, `) associated with the U(2n) action

αg : Φ ∈ M1(2n, `) 7→ gΦ ∈ M1(2n, `) (g ∈ U(2n)). (4)

Indeed, in view of π(n,l) ◦ αg = π(n,l) (g ∈ U(2n)), we have

π(n,l) : M1(2n, `)→ P` ∼= U(2n)\M1(2n, `), π(n,l) : Ṁ1(2n, `)→ Ṗ` ∼= U(2n)\Ṁ1(2n, `). (5)

In particular, the latter in (5) implies that Ṁ1(2n, `) admits the fibered manifold structure over
Ṗ` with the fiber U(2n)/U(2n − `), where U(2n − `) stands for the group of unitary matrices of
degree 2n− `. From now on, we focus our attention to the whole spaces, M1(2n, `) and P`, without
mentioning of the handling of irregular points due to the page length limitation.

The fibered structures (5) lead us to the direct-sum decomposition of the tangent space,

TΦM1(2n, `) = {X ∈ M(2n, `) | 1
`
<(trace Φ†X) = 0} (Φ ∈ M1(2n, `)), (6)

of M1(2n, `) at Φ ∈ M1(2n, `). Indeed, defining the vertical subspace by

Ver(Φ) = {X ∈ TΦM1(2n, `) |X = ζΦ, ζ ∈ u(2n)} (7)

with u(2n) consisting of the anti-Hermitean matrices of degree 2n, we have

TΦM1(2n, `) = Ver(Φ)⊕Hor(Φ) (Φ ∈ M1(2n, `)), (8)

where Hor(Φ) is the complementary subspace orthogonal to Ver(Φ) with respect to the canonical
Riemannian metric

((X,X ′))ESOTΦ =
1

`
<(traceX†X ′) (X,X ′ ∈ TΦM1(2n, `),Φ ∈ M1(2n, `)). (9)
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According to the direct-sum decomposition (8), we define the horizontal lift of any tangent vector
Ξ ∈ TρP`.

Definition 2.1. The horizontal lift of a tangent vector Ξ at ρ ∈ P` is the unique tangent vector
Ξ∗ at Φ ∈ M1(2n, `) with π(n,l)(Φ) = ρ which satisfies

Ξ∗ ∈ Hor(Φ), π
(n,l)
∗,Φ (Ξ∗) = Ξ, (10)

where π
(n,l)
∗,Φ is the differential map of π(n,l) at Φ.

The SLD-Fisher metric ((·, ·))QF is shown to be the Riemannian metric of the QIS that makes
the projection π(n,l) the Riemannian submersion in the sense [4, 9],

((Ξ,Ξ′))QFρ = 4((Ξ∗, (Ξ′)∗))ESOTΦ (Ξ,Ξ′ ∈ TρP`, π(n,l)(Φ) = ρ). (11)

We give a pair of lemmas and a definition convenient to the succeeding sections.

Lemma 2.2. A tangent vector X ∈ TΦM1(2n, `) (Φ ∈ M1(2n, `)) is horizontal, viz X ∈ Hor(Φ),
if and only if it satisfies

ΦX† −XΦ† = 0. (12)

Lemma 2.3. A tangent vector X ∈ TΦM1(2n, `) (Φ ∈ M1(2n, `)) is vertical, viz X ∈ Ver(Φ), if
and only if it satisfies

π
(n,l)
∗,Φ (X) = Φ†X +X†Φ = 0. (13)

Definition 2.4. A smooth curve Γ = {γ(t) ∈ M1(2n, `) | t ∈ ∃[a, b]} (γ: C∞ function) in M1(2n, `)

is horizontal if and only if it satisfies
dγ

dt
(t) ∈ Hor(γ(t)) for any t ∈ [a, b].

We move to describe the geodesics with respect to the Levi-Civita parallel transport (the LC
geodesics) in the ESOT in an explicit form. Since the Riemannian metric ((·, ·))ESOT is equal to
the canonical one up to the constant multiple 1

` (see (9)), we easily see that loci of any LC geodesic
in the ESOT is a ‘great circle’, so that we have the following.

Lemma 2.5. Any LC geodesic in the ESOT drawing a great circle is expressed as

Φ(s) = Φ0 cos s+X0 sin s (s ∈ [0, 2π]), (14)

where s is the arc-length parameter and Φ0, X0 ∈ M1(2n, `).

We note here that Φ0 and X0 provide the initial condition, Φ(0) = Φ0 and dΦ
ds (0) = X0, where

the norm,
√

((X0, X0))ESOTΦ0
, has to be fixed to be 1 under the arc length description. Which

geodesic is the Grover-type search sequence is on? It is realized as (14) with

(Φ0)jk =

√
1

2n

(
j = 1, 2, · · · , 2n
k = 1, 2, · · · , `

)
, X0 =

√
1

2n − 1
Φ0 +

√
2n

2n − 1
W, (15)

where W is the target for search (see [4, 6] for detail).

3 Classification of geodesics

We classify the geodesics in the ESOT according to which of those can be reduced to the geodesics
with respect to the m-parallel transport, those to the LC parallel transport and otherwise.

3.1 Geodesics in the ESOT reducible to the LC geodesics in the QIS

We seek the geodesics in the ESOT reducible to the geodesics in the QIS with respect to the Levi-
Civita parallel transport for the SLD-Fisher metric (the LC geodesics). We have the following.
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Theorem 3.1. A geodesic Φ(s) in the ESOT is reduced to an LC geodesic in the QIS for the
SLD-Fisher metric if and only if it is horizontal. The condition for a geodesic Φ(s) in the ESOT
to be horizontal is written in the form,

Φ0X
†
0 −X0Φ†0 = 0, (16)

in terms of the initial condition, Φ(0) = Φ0 and dΦ
ds (0) = X0, for Φ(s).

We will give a brief intuitive sketch of a proof only without getting into detail due to page length
limitation. A key is the so-called ‘shortest path property’ valid for the LC geodesics [9]. Let us
start with an LC geodesic of (14) not necessarily horizontal. For any sufficiently small segment Σa,b
of the geodesic corresponding to the interval [a, b] (⊂ [0, 2π]) of s, we have the following relation
between the arc-length L(Σ) of Σ and that of the reduced curve π(n,l)(Σ) denoted by L(π(n,l)(Σ)):
On recalling (11), we have

L(Σ) =

∫ b

a

((
dΦ

ds
,
dΦ

ds
))ESOTΦ(s) ds

=

∫ b

a

((
dΦ

ds

H

,
dΦ

ds

H

))ESOTΦ(s) ds+

∫ b

a

((
dΦ

ds

V

,
dΦ

ds

V

))ESOTΦ(s) ds

≥ 1

4

∫ b

a

((
d

ds
(π(n,l)(Φ),

d

ds
(π(n,l)(Φ))))QF

π(n,l)(Φ(s))
ds = L(π(n,l)(Σ)), (17)

where dΦ
ds

H
and dΦ

ds

V
are the horizontal and the vertical components of tangent vector dΦ

ds (s)
according to the direct-sum decomposition (8). Since the equality holds true on the third line of
(17) only for the horizontal geodesics, the reduced segment π(n,l)(Σ) becomes shortest if Σ is a
segment of a horizontal geodesic.

3.2 Geodesics in the ESOT reducible to the m-geodesics in the QIS

This subsection is devoted to report another class of geodesics in the ESOT that is characterized
to be reduced to the m-geodesics, the geodesics with respect to the mixture parallel transport, in
the QIS. We start with characterizing the m-geodesics in the QIS. The geodesic, denoted by ρ(t),
from ρ0 ∈ P` to ρ1 ∈ P` is written in a very simple form [5],

ρ(t) = (1− t)ρ0 + tρ1 (t ∈ [0, 1]). (18)

Note that the parameter t is chosen arbitrary up to affine transformations; t→ αt+ β (α, β ∈ R).
To those who are not familiar to differential geometry, the m-geodesics might be understood as
‘straight-line segments’ in the QIS. This is not true, however, since the QIS is endowed not with
the Euclidean metric but with the SLD-Fisher metric which is of course not Euclidean.

In contrast with the previous subsection for the case reducible to the LC geodesics in the QIS,
we are not able to utilize the shortest path property to characterize the m-geodesics since the
m-parallel transport is not the Levi-Civita parallel transport for the SLD-Fisher metric of the QIS.
Hence we show a minimum of calculation to reach to Theorem 3.2 below. On writing any great
circle (geodesic) in the ESOT in the form (14), our task is to find a condition for π(n,l)(Φ(s)) to
be on an m-geodesic in the QIS, where π(n,l)(Φ(s)) is brought into the form,

π(n,l)(Φ(s)) =
1

2`

{
(Φ†0Φ0 +X†0X0)− (X†0X0 − Φ†0Φ0) cos 2s+ (Φ†0X0 +X†0Φ0) sin 2s

}
, (19)

periodic with period π. To seek the condition for π(n,l)(Φ(s)) to be brought into the form (18),
it is easier to manipulate the parallelity condition given below than to handle (19) directly: Let
us consider the image of the tangent vector dΦ

ds (s) of the geodesic at Φ(s) through the differential

map π
(n,l)
∗,Φ(s), which is calculated to be

π
(n,l)
∗,Φ(s)(

dΦ

ds
(s)) =

d

ds

(
π(n,l)(Φ(s))

)

=
1

`

{
(X†0X0 − Φ†0Φ0) sin 2s+ (Φ†0X0 +X†0Φ0) cos 2s

}
∈ Tπ(n,l)(Φ(s))P`. (20)

The parallelity condition is the linear dependence of π
(n,l)
∗,Φ(s)(

dΦ
ds (s1)) and π

(n,l)
∗,Φ(s)(

dΦ
ds (s2)) for any

pair of distinct s1 and s2 in [0, 2π], which is clearly equivalent to the condition for π(n,l)(Φ(s)) to
be brought into the form (18). We have the following.
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Theorem 3.2. A geodesic Φ(s) in the ESOT is reduced through π(n,l) to an m-geodesic in the
QIS, if and only if it satisfies one of the following conditions.

(a) Φ†0X0 +X†0Φ0 = 0 and X†0X0 − Φ†0Φ0 6= 0.

(b) Φ†0X0 +X†0Φ0 6= 0 and X†0X0 − Φ†0Φ0 = 0.

(c) λ1(Φ†0X0 + X†0Φ0) + λ2(Φ†0X0 + X†0Φ0) = 0 for certain non-vanishing λj (j = 1, 2) with

Φ†0X0 +X†0Φ0 = 0 and X†0X0 − Φ†0Φ0 6= 0.

The case of the Grover-type search (15) corresponds to the condition (a). What do those
conditions, (a)-(c), mean? On recalling Lemma 2.3 and the expression (2.5), the vanishment,

X†0X0 − Φ†0Φ0 = 0, is equivalent to the vertical condition (13) for the tangent vector of Φ(s) at

s = 0, and so is X†0X0 − Φ†0Φ0 = 0 at s = π
4 . The condition (c) implies a kind of parallelity

condition between π
(n,l)
∗,Φ(0)(

dΦ
ds (0)) and π

(n,l)
∗,Φ(π4 )(

dΦ
ds (π4 )).

3.3 Concluding remarks

As presented in the previous subsections, we have classified the LC geodesics in the ESOT into
the geodesics reducible to the LC geodesics in the QIS, those to the m-geodesics and those not re-
ducible to either of above. The existence of LC geodesics in the ESOT reducible to the e-geodesics
in the QIS is an open question still. Through the connection between the geodesics in the ESOT
and the QIS given rise from our classification, we may expect that quantum information objects,
e.g. the quantum estimation problem, concerning with the geodesics in the QIS can connect with
quantum objects with dynamics and geometry in the ESOT. On broadening our horizon to clas-
sical information geometry, there exist interesting problems, interior point algorithms, statistical
estimation, machine learning and so on, that might be expected to connect with the dynamics and
geometry in the ESOT through a quantization and our classification.

What is a role of computer algebra along the direction of this paper? Though we have explicitly
given the conditions for the LC geodesics in the ESOT reducible to the LC and the m-geodesics in
equation form, it is very difficult to imagine a concrete form of matrices, Φ0 and X0, for the initial
condition. Computer algebra therefore expected to work well to realize the matrices in a concrete
form that might lead us to a physical implementation of geodesics in the ESOT suitable to a given
problem.
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On higher dimensional cocyclic Hadamard matrices
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Abstract

Little is known about the existence of improper higher dimensional Hadamard matrices
(the interested reader is referred to [4, 5, 6], the main references on the subject). Since the
cocyclic framework has showed to be a promising technique for handling with planar Hadamard
matrices (see [3, 1, 2] for instance), we wonder if higher dimensional cocyclic matrices might be
suitable as well for looking for higher dimensional improper Hadamard matrices. In this paper
we first give a method for computing a basis for n-cocycles over a finite group G, from which
some different techniques for looking for higher dimensional cocyclic Hadamard matrices over
G are derived. Some examples are given for illustrating these procedures.

Keywords
Hadamard matrix, cocyclic Hadamard matrix, higher dimensional Hadamard matrix
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Abstract

Classical persistence [1], in very general terms, gives the observer a good presentation of
data related with the homology of a (time or other parameters dependent) complex which
usually arises from some applied setting (digital images, sensor networks, data analysis,...).
However, any (co)homology theory can be endowed with extra algebraic structures which may
also reveal some special behaviour of the considered situation.

Thus, inspired by computational approaches to A∞-structures by Pedro Real et al. through
Discrete Morse Theory and the Homotopy Perturbation Lemma [2], we develop a theory of
persistence for A∞-structures on (co)homology, with the hope of filtering in a finer way the
noise arising in 3D digital images.

References

[1] H. Edelsbrunner and J. Harer, Computational topology: An introduction, Applied mathemat-
ics, American Mathematical Society, 2010.

[2] A. Berciano, H. Molina-Abril, P. Real. Searching high order invariants in computer imagery.
Applicable Algebra in Engineering, Communications and Computing, v.23 (Issue 1-2) pp.
17-28, 2012

Partially supported by Ministerio de Educación y Ciencia, project MTM2010-18089.

290



Discrete Morse theory and computational homology.
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Abstract

During the last 15 years some classical concepts from pure mathematics have become
computationally tractable. Also a few other concepts have been discovered until that time.
The classical concepts which are now routinely computable are homology and cohomology
groups and their generators. The new concepts, which were introduced along with algorithms
to compute them, are standard and zigzag persistence.

At the same time, somehow independently discrete Morse theory and its computational
methods has been developed. They have been used to simplify functions on surfaces, denoising,
and in some situation to obtain Betti numbers.

Still, both computational homology and discrete Morse theory provide information about
evolution of level sets of some function defined on a cell complex. In this talk we will show how,
using discrete Morse theory, one can obtain information about field homology, persistence and
zigzag persistence. Consequently, we will show, that discrete Morse theory is a main branch
from which all the described computational methods can be derived.

This talk is based on joint work with Vidit Nanda and Hubert Wagner.

Keywords
Discrete Morse theory, computational homology, persistence, zigzag persistence, computations
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Abstract

It is well known that classical persistent homology is invariant under the action of the group
Homeo(X) of all self-homeomorphisms of a topological space X. As a consequence, this theory
is not able to distinguish two filtering functions ϕ,ψ : X → R if a homeomorphism h : X → X
exists, such that ψ = ϕ ◦ h. This fact greatly restricts the use of classical persistent homology
in shape comparison. As a trivial example, we can think of a gray-level image represented by
a function ϕ : R2 → R. Obviously, the substitution of ϕ with ϕ ◦ h can greatly change the
appearance of the image, for h ∈ Homeo(R2). The following question naturally arises: How
can we adapt the concept of persistence in order to get invariance just under the action of a
proper subgroup of Homeo(X) rather than under the action of the whole group Homeo(X)?

In this talk we will illustrate how this problem can be managed by means of G-invariant
persistent homology [1] and other recently developed techniques.
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Size function, persistent homology, natural pseudo-distance
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Abstract

In this paper, we compute the boundary and acyclicity algebraic operators of each of the 23
elementary cell complexes in the context of the discrete combinatorial geometry developed by
Kenmochi and Imiya [1]. Moreover, we compute the boundary and acyclicity operators of the
barycentric dual cell complex of each of these elementary cell complexes. Finally, we present
some conclusions about the relationship between the boundary and acyclicity algebraic of an
elementary cell complex and its corresponding dual cell complex.

Keywords
discrete combinatorial geometry, cell complex, dual cell complex, algebraic topology, homology
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Pawe l Pilarczyk
University of Minho (Portugal)

Pedro Real
University of Seville (Spain)

http://www.pawelpilarczyk.com/

Abstract

Algorithms for the computation of homology, cohomology, and related operations on cu-
bical cell complexes are introduced, using the construction of a chain contraction from the
original chain complex to a reduced one that represents its homology. As opposed to the
“traditional” approach in which the Smith Normal Form of boundary matrices is computed,
the additional structure provides considerably more comprehensive homological information.
With this technique, one can instantly determine the homology class of any cycle, which al-
lows computing (co)homological operations (like the cup product in cohomology) much more
easily than in the approach in which the SNF alone is computed. This work is based on
previous results for simplicial complexes obtained by Pedro Real, Roxio Gonzalez-Diaz, and
their collaborators, and uses Serre’s diagonalization for cubical cells.

Keywords
Algorithm, Software, Homology, Cohomology, Computational homology, Cup product,

Alexander-Whitney coproduct, Chain homotopy, Chain contraction, Cubical complex, Cubical
homology
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Abstract

We deal with here the complex problems involved in adapting and efficiently applying al-
gebraic topology-based methods for the analysis of digital images up to four dimensions. To
achieve this, an underlying mathematical and computational framework to exploit homology-
based tools (related to the notion of n-dimensional holes) in diverse 4D discrete settings is
generated. The computational nature of homology information and close connection to appli-
cations is highlighten using new homological algebra notions such as chain-integral complexes
and equivalences. This algebraic machinery works with two nilpotent algebraic operators
acting on the same graded module. It is is more than a mere extension of the classical
homotopy category of chain complexes, allowing us to establish a graph-based topological rep-
resentation of a subdivided object and a strong interplay between Discrete Morse Theory and
Algebraic-Topological Models. Restricted to real coefficients, it also help us in reinterpreting
and exploiting homology information and in finding general harmonic representative classes.

From a theoretical point of view, the research will be focused on the following topics:
Homological Modeling, Analysis and Acuity for 4D digital images. These three issues are
developed using chain-integral tools.

Concerning Homological Modeling, the idea is to construct a continuous analogous of
4D digital objects (based on square hypercubes) and to develop homology and geometry
computation algorithms based on the chain-integral homology (CHI) framework. 402 non-
isometric hyper-polyhedra are the elementary bricks of this local-to-global topological approach
[5] which aims to establish results harmoniously combining geometry and topology.

For advancing in 4D-knowledge, it is compulsory to clarify the nature and role of topology in
the digital imagery setting, and to try and positively answer the related problems of robustness
with respect to noise and dimensionality reduction. We develop a topological processing
framework of 4D digital images, which is consistent, robust, flexible and reusable [4, 2, 3, 1]. We
use global combinatorial stuff (mainly, graphs and trees) in order to do advanced topological
analysis at two levels: Cocyclic calculus ( topological skeletons, Reeb graphs, classification of
cycles, contractibility and transformability of cycles, cocyclic operations, ...) and Homological
Calculus (homology and cohomology classes, homology A(∞)-coalgebra, cohomology ring,
cohomology operations, homotopy operations,...).

Keywords
Computational Homological Algebra, chain-integral equivalences, 4D digital image, algebraic

modelling, χ-calculus, cocyclic calculus, homology calculus, homological classification, topological
skeletons, homology A(∞)-coalgebra, homotopy groups
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Abstract

Persistent homology [1] is an algebraic method for measuring topological features of shapes
and functions, which can be applied to study digital images. More concretely, this technique
consists in identifying homological features that persist within the different stages of a filtra-
tion. On the other hand, spectral sequences [2] are a tool for computing homology groups by
taking successive approximations. Both concepts are deeply related.

In a previous work [3], we showed that a slight modification of our previous programs for
computing spectral sequences [4] is enough to compute also persistent homology. By inheri-
tance from our spectral sequence program, we obtained for free persistent homology programs
applicable to spaces not of finite type (provided they are spaces with effective homology) and
with Z coefficients (significantly generalizing the usual presentation of persistent homology
over a field).

In this work, we will use our programs in order to compute persistent homology of digital
images, which will allow us to determine relevant features, that will be long-lived – in the
sense that they persist over a certain parameter range – on contrast with the “noise” which
will be short-lived. As a test case, our programs could be applied on a fingerprint database.
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Abstract

In ([1]) a Likert scale is defined to be a psychometric response scale primarily used in
questionnaires to obtain participant’s preferences or degree of agreement with a statement or
set of statements. Respondents are asked to indicate their level of agreement with a given
statement by way of an ordinal scale. The most commonly used is a 5-point scale ranging
from “Strongly Disagree” on one end to “Strongly Agree” on the other with “Neither Agree
nor Disagree” in the middle.

Normally, when a company wants to check the capabilities and skills of their employees
(or when looking for new employees), a huge Likert scale questionnaire is asked to be filled
up. With such a questionnaire, different competences are evaluated and therefore, the result
of a questionnaire will provide important information about capabilities and skills of the
respondents for each competence.

As an example, we will describe, for a real questionnaire of 170 Likert items (questions)
and 23 competences, how to classify each question with the corresponding competence. That
is, to find out, for each Likert item, which competence is evaluated. We will present how to
face and solve the problem using two different techniques:

1. A numerical approach, using the theory of genetic algorithms.

John Henry Holland is considered the father of Genetic Algorithm by adapting Charles
Darwin’s natural selection theory to Artificial Intelligence.

In the computer science field of artificial intelligence, a genetic algorithm is a search
heuristic that mimics the process of natural evolution ([2]). This heuristic is routinely
used to generate useful solutions to optimization and search problems.

Genetic algorithms belong to the larger class of Evolutionary Algorithms, which generate
solutions to optimization problems using techniques inspired by natural evolution, such
as selection, genetic engineering, crossover, mutation and cloning.

These concepts will be adapted to the example and later we will describe the solu-
tion found. This technique required software which deals with numeric approximations
(specifically, we used MatLab).

One of the main advantages of this method is that this numerical approach can even
be used when there are less equations (filled questionnaires) than unknowns (items) and
this technique can leads to find the required solution.

2. An exact method, by solving a quadratic system of n equations and n unknowns.

We will show how this quadratic system was built and how it can be converted to a linear
system which provides the solution in a easy way. This technique required the use of a
Computer Algebra System (specifically, we used Derive) for exact computations.

One of the main advantages of this technique is that if there are enough equations, this
exact method will lead to the solution faster than the numerical approach.

After this example, we will set the basics to solve this competence-assignment problem for a
generalized version of similar questionnaires with n Likert items for evaluating m competences
using both techniques.

Both techniques were first introduced and presented in the “Nonstandard Applications of
Computer Algebra” Special Session at ACA 2012 ([3]). In this case, we present improved
versions of both techniques which can be used even when there exists some errors in the data.
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Also, we will show the results obtained when applying this new improved versions to another
example of a huger Likert questionnaire.

Finally, we will describe also other advantages and disadvantages of both techniques in
addition of the ones described above.
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Likert’s questionnaires, competences, genetic algorithms, Numerical Methods, Cas
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Abstract

The approach to urban planning has started to change in recent years over many cities.
What used to be privileges for motor vehicles, are now incentives to the development of
sustainable transport modes among which cycling lanes play a substantial role.

With the development and construction of this kind of facilities, there has been an insuf-
ficient coordination between different modes of transportation. This has been due mainly to
the lack of comprehensive studies, which have caused the expected intermodality to fail.

By appplying graph theory, mathematical models were developed, calculations were made,
and optimized designs were achieved for this kind of infrastructure. These results make it
possible to use resources more efficiently and to improve cycling paths that already exist.

These calculations were performed using the computer algebra tool under symbolic com-
putation SAGE. In this article we present the graph methods used for optimization along with
the final design of bicycle lanes that were obtained.

Keywords
Optimization, Routes, Algorithm, SAGE

1 Introduction

Over recent years, the evolution, transformation and development of the urban fabric of cities
and their surroundings has occurred at a rapid pace. These changes have had a primary purpose:
mobility.

The economic impact makes urban infrastructure costs to maintain mobility model based on
the predominant use of the car pose a significant economic cost in the design, implementation and
maintenance of new infrastructure oriented at that.

It has begun to consider taking necessary steps to managing mobility demand by diversifying
and promoting less aggressive modes and consume less floor and resources: the walking, public
transport and bicycle. Currently, each of the administrations has been dedicated to developing
mobility plans to promote, facilitate and incorporate the bicycle as a means of transportation
optimal.[For94]

Therefore, it is necessary to discuss new standards in sustainable mobility to address the prob-
lems of increasing car use as a basis for the design of tools for planning and management more
effective. Is necessary a planning to promote sustainable mobility model that produces a city
transport efficient less and private vehicle use and more conducive to the use of urban transport
and, in particular, the bicycle transportation.[O&97]

The development and evolution of geographic information systems (GIS) has facilitated their
use in urban planning and organization of the city and territory. This, coupled with the use of
mathematical systems as graph theory, allows a study, design and calculation of future transport
networks.

In this particular case, the use of graph theory allows guarantees ensure that spending on the
design and construction of networks for bicycle is better planned with predictions based on data
from studies mathematically, from graph theory, as it seeks to develop this algorithm.

The development of the algorithm that is developed, objectively, tidy and actual functionality,
the optimal design from the using of graph theory, as is being done in the different modes of
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transport studies, provides a new way responsible, orderly and economic of infrastructure design
for the use of bicycles.[Li12]

2 Approach of problem

Currently, there are various studies that present examples of optimization of public transport
routes. For this type of route is important to consider the distances to travel, since this will
depend on travel time, the cost thereof, the improvement of the service and, above all, most
importantly, customer satisfaction.

For the calculation of such routes, the software uses as a starting point Dijkstra’s algorithm,
also called shortest path algorithm. An algorithm for determining the shortest path given a source
point to other points in a directed graph with weights (distances) on each edge.

Within the study from graph theory, is implemented Dijkstra algorithm through the computer
system and thus provide a more practical solution to the problem of optimal design of bicycles
lanes.

This new algorithm created part of using the minimum distance calculation for public transport,
but to apply it to the calculation and design to develop new bicycle lanes.

The idea behind this new algorithm created is to go exploring all shortest paths that start
from the origin point and lead to all other points, when you get the shortest path from the source
point, the rest of vertices that make up the graph, but incorporating a number of variables that
complement the algorithm to achieve a solution that not only depend on the shortest path, so
depend the analysis of all the variables that are formulated in this new algorithm.

As immediate goal is to get the best route planning or appropriate design for the network,
for use with bicycles. This algorithm is an improved algorithm for computing minimal paths in
graphs. There are two important parts to note:

1. The objective function: the primary goal is to minimize ”costs”. In this case, cost is con-
sidered as the sum of all variables that are taken into consideration in the calculation of the
networks.

(a) Shortest Path.

(b) Minimum Time.

2. Restrictions: For a complete study, design and planning of networks must meet certain
variables or constraints.

(a) Social / Political.

(b) Types of Streets.

(c) Slope.

(d) Etc.

Shortest path calculation is applied in graph theory is based on obtaining the fastest route or
shorter, depending on the variables to study, these variables are often time or distance, respectively.

Achieving of new algorithm ensures that this mathematical system that is created meets an
unmet need at present to design and plan the routes for the infrastructure for the use of bicycles,
increasing of study variables. These variables are the restrictions or the end condition the good
design of future cycling infrastructure.

3 Algorithm design

As previously mentioned, this new algorithm is based on graph theory algorithms that are able to
calculate the shortest paths within any graph.

A graph is defined by its matrix structure incidence and adjacency matrix. From its adjacency
matrix, calculated the matrix with weights previously established in a database.

Length:
The first variable to consider is that of length. For route calculation is considered more im-

portant. Once you have the graph with all weights on its edges, in this case is the length, we
proceed to calculate the matrix with mathematical program like Sage and drawing the graph with
her weights.
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For this variable, the minimum distance calculation is straightforward, so once you get the
graph with their weights, we proceed to calculate the shortest path between point 0 and 12.

New Variables:
To calculate a minimum path efficiently is necessary to incorporate new variables, not just the

length, there has been a series of calculations to relate each of the new variables to the initial
study.

MATRIX(A)×δA+MATRIX(A)×
∑

[MATRIX(B)×δB×βB ]+· · ·+[MATRIX(N)×δN×βN ]

Where:
δN = % of importance given to variables.
βN = variables coefficients.
βA = slope’s coefficients.= (1 + γB

100 )
βB = traffic light’s coefficients.= (1 + γC

100 )
βC = social-political’s coefficients.= (1 + γD

50 )

∗ For these examples has been given equal importance to the variables, so has the same value.
A) Slope.
One of the main variables to be taken into account in calculating optimal routes is the slope.

The start of this variable is similar to the lengths, first calculate its matrix and graph with weights
with Sage. Once is obtained the slopes matrix, must be multiplied by the coefficient variable length
to relate.

MATRIX(B)× δB × βB
This achieves the matrix which affects the lengths. This matrix highlights how much can harm

or surpass the lengths of the sections, for that this matrix is calculated with the matrix given
lengths, but point to point in each array.

Once calculated this new matrix, you draw your graph with their respective new weights.

Now we just calculate the minimum distance for the length and the slopes of the sections
together.
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B) Traffic lights.
This section includes the time of the traffic lights in the area to be studied. For this case an

average calculation of the time of the red lights and the likelihood of meeting them in the same
color. Once you have given the values for each of the streets, is necesary to calculated Matrix and
Graph with corresponding weights. AFter to obtain the trafic lights matrix, must be multiplied
by the coefficient variable length to relate.

MATRIX(C)× δC × βC
This ensures the trafic lights matrix on the lengths. This matrix highlights how much can

harm or surpass the lengths of the sections, for that this matrix is calculated with the matrix given
lengths, but point to point in each array. Once calculated this new matrix, you draw your graph
with their respective new weights.

Now we just calculate the minimum distance for the length and the trafic light of the sections
together.

C) Social-Political.
This value is assigned by the importance that can be attributed to some streets in the city, due

to the existence of schools, or any type of infrastructure that is priority when building or designing
a bike path near it. Once you have given the values for each of the streets, is necesary to calculate
the Matrix and Graph with corresponding weights. After to obtain the social/politicals matrix,
must be multiplied by the coefficient variable length to relate.

MATRIX(D)× δD × βD
This ensures the social-politicals matrix on the lengths. This matrix highlights how much can

harm or surpass the lengths of the sections, for that this matrix is calculated with the matrix given
lengths, but point to point in each array. Once calculated this new matrix, you draw your graph
with their respective new weights.
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Now we just calculate the minimum distance for the length and the social-political of the
sections together.

4 Algorithm’s checking

After to calculate each of the variables, it proceeds to the testing and demonstration of the algo-
rithm. This shall be the sum of the final matrices calculated for each of the cases.

MATRIX(A)+MATRIX(A)×
∑

[MATRIX(B)× βB ] + [MATRIX(C)× βC ] + [MATRIX(D)× βD]

Once calculated the Final Graph with weights of all variables that have been studied for this
case (Lenght, Earrings, Traffic Light and Social-Politician) should calculate the minimum distance
to verify the functionality of the new algorithm.

As can be seen, the Shortest Path to travel from point 0 to 12 has been changed with the
calculation of the different variables that have been studied. This indicates that the algorithm is
feasible for the calculation and design of this case.

In essential for the use of this algorithm is to have the database to be appropriate for each
of the cases studied. After obtaining each of these variables, we can design optimal routes for
this type of infrastructure, allowing a great improvement in the future construction of cycle lanes,
encouraging the use of citizens of these infrastructures and improving the sustainable transport in
cities.
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Abstract

It is broadly extended that the electrical equivalent model equation of a solar cell is de-
veloped where its variables are solved in an implicitly way. The resolution of these equations
allows us to properly estimate the operating voltage of the different solar cells and hereupon
we can predict the electricity generated.

In this equation, some variables are affected of ambient conditions (solar radiation level,
ambient temperature, etc.). Additionally, some correction factors must be applied so that to
subtly modify the previous calculation and approximate the theoretical model to final yield
found.

To solve these equations we have proceeded, following the philosophy of predictor-corrector
methods well-known as Adam-Bashforth and Adam-Moulton, to develop a methodology that
we have named as ”reverse decomposition”. Having demonstrated the initial conditions to be
met by the decomposition made, we proceeded to apply them on electrical behavior equations.
The methodology has been developed under CAS systems (Computer Algebra System), and
programmed with wxMaxima software.

Keywords
numerical methods, sustainability, solar energy, wxMaxima
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Abstract

CUDA (Compute Unified Device Architecture) is a parallel computing platform and pro-
gramming model created by Nvidia and implemented for the graphics processing units (GPUs).
A wide range of functions of symbolic and numerical mathematical software can be enhanced
using CUDA, delivering dramatic performance gains. Areas as image processing, linear alge-
bra, financial simulation, Fourier transforms, etc. can be GPU-enhanced.
In this talk we will show how a CUDA-framework can be implemented in order to improve
desktop mathematical software as Wolfram Mathematica or Matlab and online mathematical
software as Sage.

Keywords
CUDA,Graphic Processor Units,enhanced symbolic and numerical software
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Abstract

We present numerical algorithm solves for a new positioning system using techno-accessibility
inside buildings, whose platform is Power line communication (PLC).

This system has been implemented using computer algebra programmes, in order to prop-
erly locate the user in a spot inside the building with this new technology. For this we
proceeded to calculate their position coordinates taking into account: signal travel time, the
wave speed, the interference due to changes in temperature and density through the means
which it travels.

In the system there are associated several existing methods and infrastructures: electricity
network, internet, web pages, Wi-Fi, GNU General Public License, Bluetooth, Radio Fre-
quency Identification, computers and serves.

The end user will be guided through a smartphone using images and/or voice and will
allow you to know the possibilities offered by the facilities where you are situated.

The data is processed under wxMasima and can have a wide variety of functions such as:
creating virtual 3Dmodels of building, situation within them and added services. All this is
the key to user- level interaction.

After its development and implementation, the horizon of this future is exciting. Its range
will cover a vast diversity off applications and provide a variety of uses, as takes place with
current GPS navigations system outdoors. Some of there new applications will be present as
the culmination of this work.

Keywords
Techno-accessibility, PLC, Indoor navigation, Numerical algorithm solves, 3Dmodels,

Smartphone, Intelligent building, Positioning system, Apps
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Abstract

Mechanisms appearing in engineering sciences are devices which are usually composed of
different types of rigid bodies which are put together with different types of joints. The joints
connecting the bodies impose different types of constraint equations between the coordinates of
the bodies. If the mechanism consists of open kinematical loops the analysis of its configuration
space is typically rather straightforward, but in the presense of closed loops the analysis is
usually a lot more complicated.

From mathematical point of view the kinematical analysis is simply the analysis of the
solution set imposed by the constraint equations. In many cases the solution set can be
treated as an algebraic variety defined by the constraints. In engineering terms this is referred
to as the configuration space of the mechanism. This allows us to use the state of the art
computational methods and Gröbner bases techniques in the actual algebraic analysis of the
constraint ideal generated by algebraic constraint equations.

Most interesting questions from engineering point of view are the mobility (degrees of
freedom, dof) and various singularities (for example changes in mobility) of the configuration
space. In our context the mobility is simply the dimension of the corresponding variety and
singularities are singularities of this variety.

In many cases the configuration space can have components of different dimension. As
an algebraic variety the configuration space has natural irreducible decomposition which cor-
responds to the prime decomposition of the constraint ideal. The connected components of
different irreducible components are called motion modes of the system and the maximal
connected unions of these components are called assembly modes of the mechanism.

We will show, using several nontrivial examples, how we can effectively use computer
algebra and Gröbner bases techniques to study the mobility and singularities of given systems.
Moreover we will demonstrate how we can simplify the actual constraints to enhance the
dynamical analysis of the mechanisms.

Keywords
Kinematical analysis, Computer algebra, Gröbner bases, Ideal decompositions
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Abstract

The objective of this talk is to present different applications of CAS software to solve
practical problems in engineering. This practical applications will be the departing point
for teaching numerical methods in engineering. CAS software has the advantage of allowing
students to confront real life examples in an easy way. Moreover, resolution of such problems
will motivate and justify numerical methods in engineering.

As a particular case we will show some examples using Sage and SymPy which are Open
Source.

Keywords
CAS, Symbolic mathematics, Sage, SymPy
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Abstract

Algebra applications for computers are an essential tool for solving complex problems.
Among the variety of programs that exist nowadays, in this paper we will choose wxMaxima
as open source computer algebra system for symbolic computation on Lisp language.

This software will be applied to the statistical control of quality, which is commonplace
in many business areas and most developed in mass production industries. Authors such as
Juran, Deming and Ishikawa have contributed substantially to this field.

In the case of construction industry, quality control is often carried out very poorly. Mini-
mum legal requirements are usually the target, causing serious trouble to the works and adding
unexpected costs.

For this reason, this article aims to transfer quality control statistical methods that have
been successful producing industry-scale objects, to an industry which is quite distant to it,
such as construction. Algorithmic development under wxMaxima was used in order to solve
and implement this approach.

Keywords
Statistical methods, Quality Control, Construction, wxMaxima

1 Introduction

Quality control in the construction industry is becoming increasingly necessary. The speculation
and the mass production of the works make the quality is careless. The requirement of a qual-
ity control should be developed as a general rule. Its to avoid (prevent) not only the customer
dissatisfaction, but risks and losses due to little or no quality control in the construction.

The statistical control is one of the solutions to this problem. It was Born in the late 20’s at
Bell Laboratories. Its inventor was A. Shewhart, who in his book ”Economic Control of Quality
of Manufactured Products” [She31](1931) set the standard that would follow other distinguished
disciples (J. Juran, W.E. Deming, K. Ishikawa).

The statistical control is based on the variations that are produced when a production process
is executed in normal conditions. The results that are obtained to examine the products made in
the process tend, generally, to a Gaussian distribution. In which it is seen that half of the results
will be below an average value and half above.

The causes of variations can be:

• Random causes: They are inherent to the process, which appear and disappear of random
form, producing a regular variability that can be reduced but not removed.

• Assignable causes: They are caused by specific reasons.

A process is under statistical control when only random causes act. The variation of the results
it will be found in the range given by:

µ± εm . . . (1)

Where:

313



µ is process mean.
εm is inherent error of the production process, given by the equation:

εm =
tσ√
n
. . . (2)

In which:
t is factor that depends of the level of confidence.
σ is standard deviation of the process.
n is sample size.

Where in a specific production process act one or more assignable causes, is said that the pro-
cess is out of statistical control. As there is a high probability that the variations are outside the
range described above. It’s being necessary to identify the causes that produced them. With the
purpose of remove at the appropriate time to avoid the nonconformity, the waste of time and the
increased cost.[JGB83]

Statistical analysis of the results which are obtained from the measurements and testing in all
phases of a specific production process, allow to conclude if the process is in statistical control or
early detection the occurrence of assignable causes that put out of statistical control. It’s can be
performed through control charts.

2 Control Charts

One of the techniques which it is applied in statistical control is control charts. They analyze the
evolution over time of a quality characteristic of which variation is wanted to control (ordinate
axis), based on the controlled product units (abscissas axis).

In the control chart is recorded the different values of the characteristic. If are joined the
different values, it is obtained a broken profile, called graph trends. The control chart is completed
by the statistical control limits. They are three horizontal lines that are identified with the values
defined of the characteristic to control, that are interesting to valuate the process stability: Lower
Statistic Limit, Central Statistic Limit or Average Quality and Upper Statistical Limit. These
limits should not be confused with specification limits and optimal central value, which are technical
and have a different meaning.

The characteristics submitted to control in a graph can be of two types: attributes and variables.
The attributes are characteristics that can only take a limited number of values, one or two. Their
presence in the product is usually indicative of a unsatisfactory quality level. The variables are
continuous characteristics, can take an indeterminate number of different values, and unlike the
attributes to know if it is reflected an appropriate level of quality in the product is necessary to
evaluate its magnitude by a measurement process.

It exist several types of control charts. Depending on the characteristic that is analyze), it is
used one or another. Although there are various methods, will be analyzed the chart of mean-
standard deviation. For more information about the wide variety of control charts I recommend
reading ”Quality Control” of D. H. Besterfield [Bes09], where you can delve.

2.1 Control Chart Mean-Standard Deviation

The variables control charts are used in continuous characteristics, the determination of the value
involves in performing measurements. The charts of mean - standard deviation indicate how to
progress the sample mean in relation to the process mean.

In the mean chart, every time that a sample is taken, is calculated the mean value of the
characteristic (3) in the observations of the sample and is represented in the chart.

X̄ =

∑n
i=1Xi

n
· · · . . . (3)

Where:
X̄ is sample mean.
Xi is characteristic to control of the element i the sample.
n is sample size.
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The average quality is corresponded with the mean of process. If process mean is not known
(4), it can be used as estimate the average of the sample mean (5).

CLST = µ ≈ ¯̄X . . . (4)

¯̄X =

∑N
j=1 X̄j

N
. . . (5)

Where:
¯̄X is Arithmetic average of the means of the characteristic to control for all samples.
X̄j is mean of the characteristic to control of the sample j.
N is sample size analyzed.

Statistical limits are calculated by the next expressions:

LLST = µ+
tσ√
n
. . . (6)

ULST = µ− tσ√
n
. . . (7)

When the standard deviation of the process is unknown. It is can estimate the following way:

σ =
S̄

C4
. . . (8)

S̄ =

∑N
j=1 Sj

N
. . . (9)

S =

√∑n
i=1(Xi − X̄)2

n− 1
. . . (10)

Where:
S̄ is the arithmetic average of standard deviation of the feature to control in all samples ana-

lyzed.
C4 is a parameter experimentally determined, that implicate the standard deviation of the

population and the average of the standard deviation of samples.
Sj is standard deviation of the feature to control of sample j.
S is standard deviation of sample.

3 Case study

Let us suppose that is constructed the hydraulic base of a road, for which the project specifies a
degree of compaction of 95% of the maximum dry volumetric mass by AASHTO test modified,
with a tolerance of 3%, and the compacting of the hydraulic base is statistically controlled whith
a confidence level of 95% , taking samples in steps of 250 m long and 11 wide, 5 in each.

(%i1) ratprint:false$

fpprintprec:5$

numer:true$

3.1 Specifications

They are added the process specifications to control. Thet are the Speficic Value (SP), the Toler-
ance (T) and the Aceptable Quality Level (AQL):

(%i4) SP:95;

(%o4) 95
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(%i5) T:3;

(%o5) 3

(%i6) AQL:95;

(%o6) 95

3.2 Samples

They are added the samples obtained from each section (Li) analyzed.

(%i7) L1:[92.6,92.610,96.1,93.5,93.9];

(%o7) [92.6, 92.61, 96.1, 93.5, 93.9]

(%i8) L2:[94.5,95.1,93.2,94.7,92.4];

(%o8) [94.5, 95.1, 93.2, 94.7, 92.4]

(%i9) L3:[92.5,94.4,93.5,97,95];

(%o9) [92.5, 94.4, 93.5, 97, 95]

(%i10) L4:[97.5,92.1,97.1,93.5,93.7];

(%o10) [97.5, 92.1, 97.1, 93.5, 93.7]

(%i11) L5:[93.3,96.5,96.4,97.5,96];

(%o11) [93.3, 96.5, 96.4, 97.5, 96]

(%i12) L6:[95.7,92.4,95.2,94.7,93];

(%o12) [95.7, 92.4, 95.2, 94.7, 93]

3.3 Specific Limits

They are Calculated specification limits (LLsp, ULsp).

(%i13) LLsp:SP+T;

(%o13)98

(%i14) ULsp:SP-T;

(%o14)92

3.4 Statistical limits

They are Calculated statistical limits. The mean of the process is unknown. It is calculated as
specified above (5).

(%i15) load(descriptive);

(%o15)C : /PROGRA/Maxima− 5.28.0− 2/share/maxima/5.28.0− 2/share/descriptive/descriptive.mac

(%i16) LA:[mean(L1),mean(L2),mean(L3),mean(L4),mean(L5),mean(L6)];

(%o16) [93.742, 93.98, 94.48, 94.78, 95.94, 94.2]

(%i17) X:mean(LA);

(%o17)94.52

The standard deviation of the process is also unknown. It is estimated as specified above (9,10).

(%i18) LB:[sqrt((length(L1)/(length(L1)-1))*var(L1)),

sqrt((length(L2)/(length(L2)-1))*var(L2)),

sqrt((length(L3)/(length(L3)-1))*var(L3)),

sqrt((length(L4)/(length(L4)-1))*var(L4)),

sqrt((length(L5)/(length(L5)-1))*var(L5)),

sqrt((length(L6)/(length(L6)-1))*var(L6))];

(%o18) [1.4343, 1.1345, 1.6962, 2.3858, 1.5758, 1.43]
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(%i19) Y:mean(LB);

(%o19)1.6094

They are required the factors t and C4

(%i20) load(distrib);

(%o20)C : /PROGRA/Maxima− 5.28.0− 2/share/maxima/5.28.0− 2/share/distrib/distrib.mac

(%i21) t:quantile_normal(1-((1-(AQL/100))/2),0,1);

(%o21)1.96

(%i22) C4:0.94;

(%o22)0.94

The statistical limits (LLst, ULst) are:

(%i23) LLst:X+((t*Y)/(C4*sqrt(length(L1))));

(%o23)96.021

(%i24) ULst:X-((t*Y)/(C4*sqrt(length(L1))));

(%o24)93.02

3.5 Control Chart Media-Standard Deviation

The control Chart Media-Standard Deviation for this process is:

(%i25) Puntos:makelist([i,part(LA,i)],i,1,length(LA));

(%o25) [[1, 93.742], [2, 93.98], [3, 94.48], [4, 94.78], [5, 95.94], [6, 94.2]]

(%i26) wxplot2d([ULst,LLst,X,LLsp,ULsp,SP,[discrete,Puntos]],[y,0,10],

[style,[lines,2,2],[lines,2,2],[lines,2,3],[lines,3,5],[lines,3,5],

[lines,3,1],[points,1,4,6]],[xlabel,"Numero de Muestra"],

[ylabel,"Grado de Compactacion"],[legend,false]);
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67. Pečovnik-Mencinger, Andreja. Slovenia. andreja.pecovnik@guest.arnes.si

68. Phisanbut, Nalina. United Kingdom. N.Phisanbut@kent.ac.uk

69. Picard, Gilles. Canada. gilles.picard@etsmtl.ca

70. Piipponen, Samuli. Finland. samuli.piipponen@uef.fi

322



71. Pilarczyk, Pawe l. Portugal. pawel.pilarczyk@math.uminho.pt

72. Pinero, Fernando. Denmark. f.pinero@mat.dtu.dk

73. Pletsch, Bill. USA. bpletsch@cnm.edu

74. Prokopenya, Alexander. Poland. alexander prokopenya@sggw.pl

75. Raab, Clemens. Germany. clemens.raab@desy.de

76. Real Jurado, Pedro. Spain. real@us.es

77. Roanes Lozano, Eugenio. Spain. eroanes@mat.ucm.es

78. Robertz, Daniel. Germany. daniel@momo.math.rwth-aachen.de
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85. Savard, Geneviève. Canada. Genevieve.savard@etsmtl.ca

86. Schmidt, Karsten. Germany. kschmidt@fh-sm.de

87. Sevilla, David. Spain. sevillad@unex.es

88. Shaska, Tony. USA. shaska@oakland.edu

89. Simón Pinero, Juan Jacobo. Spain. jsimon@um.es

90. Spiridonova, Margarita. Bulgaria. mspirid@math.bas.bg

91. Steinberg, Stanly. USA. stanly@wendouree.org

92. Sun, Yao. China. sunyao@iie.ac.cn

93. Takahashi, Tadashi. Japan. takahasi@konan-u.ac.jp

94. Trottier, Chantal. Canada. Chantal.trottier@etsmtl.ca

95. Uhler, Caroline. Austria. caroline.uhler@ist.ac.at

96. Ustymenko, Vasyl . Poland. vasyl@hektor.umcs.lublin.pl

97. Uwano, Yoshio. Japan. uwano@fun.ac.jp

98. Varbanoba, Elena. Bulgaria. elvar@tu-sofia.bg

99. Vidal, Ricardo. Spain. rvidal@uvigo.es
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Fúster Sabater, A., 118

G

Galán, J. L., 11, 15, 17, 25, 35, 183, 194, 235, 237,
301, 313

Galán, M. Á, 15, 237
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González Vida, J. M., 11, 15, 299, 309, 312

325



H

Henri, F., 238
Heras, J., 297
Hermoso, C., 163
Hernando, A., 11, 161, 187
Høholdt, T., 122
Homero Flores, Á., 38
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Abstract

Persistent homology and spectral sequences are two Algebraic Topology tools which are
defined by means of a filtration and can be applied to study topological properties of a space
at different stages. Both concepts are deeply related, and this relation allows us to use some
previous programs developed for computing spectral sequences of filtered complexes to deter-
mine now persistent homology. In particular, spectral sequences can be applied to compute
persistent homology of digital images, which will allow us to determine relevant features, that
will be long-lived on contrast with the “noise” which will be short-lived.

Keywords
Persistent homology, digital images, spectral sequences.

1 Introduction

Persistent homology [4] is an algebraic method for measuring topological features of shapes and
functions, with many recent applications such as point cloud data, sensor networks, optical char-
acter recognition and protein classification. More concretely, this technique consists in identifying
homological features that persist within the different stages of a filtration. On the other hand, spec-
tral sequences [7] are a tool for computing homology groups by taking successive approximations.
Both concepts are defined by means of a filtration and are deeply related.

In a previous paper [8], we showed that a slight modification of our previous programs for com-
puting spectral sequences [9] is enough to compute also persistent homology. By inheritance from
our spectral sequence program, we obtained for free persistent homology programs applicable to
spaces not of finite type (provided they are spaces with effective homology) and with Z-coefficients
(significantly generalizing the usual presentation of persistent homology over a field). Moreover,
our calculations made it possible to detect an error in [4]: the so called “Spectral sequence the-
orem” [4, p. 171], which shows the relation between spectral sequences and persistent homology,
includes a formula which is not correct (see [8] for details).

In this work, we use our spectral sequence programs to compute persistent homology of digital
images. This allows us to determine relevant features, that will be long-lived – in the sense that
they persist over a certain parameter range – on contrast with the “noise” which will be short-lived.
In order to reduce the time of calculations, we can use the combinatorial notion of Discrete Vector
Field [5]. As a test case, our programs could be applied on a fingerprint database.

∗Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by the Euro-
pean Union’s 7th Framework Programme under grant agreement nr. 243847 (ForMath).
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2 Preliminaries

Definition 2.1. Let K be a simplicial complex. A (finite) filtration of K is a nested sequence of
subcomplexes Ki ⊆ K such that ∅ = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Km = K.

For every i ≤ j we have an inclusion map on the canonically associated chain complexes inci,j :
C(Ki) ↪→ C(Kj) and therefore we can consider the induced homomorphisms f i,jn : Hn(Ki) →
Hn(Kj), for each dimension n. The filtration produces then for each dimension n a sequence of
homology groups connected by homomorphisms:

0 = Hn(K0)→ Hn(K1)→ · · · → Hn(Km) = Hn(K)

Definition 2.2. The n-th persistent homology groups of K, denoted by Hi,j
n (K) ≡ Hi,j

n , are the
images of the homomorphisms f i,jn :

Hi,j
n = Im f i,jn , for 0 ≤ i ≤ j ≤ m

The group Hi,j
n consists of the n-th homology classes of Ki that are still alive at Kj . A class

γ ∈ Hn(Ki) is said to be born at Ki if γ /∈ Hi−1,i
n . It is said to die entering Kj if it merges with an

older class as we go from Kj−1 to Kj , that is, f i,j−1n (γ) /∈ Hi−1,j−1
n but f i,jn (γ) ∈ Hi−1,j

n . If γ is
born at Ki and dies entering Kj , the difference j − i is called the persistence index of γ, denoted
pers(γ). If γ is born at Ki but never dies then pers(γ) =∞.

If the homology is computed with field coefficients, each group Hi,j
n is a vector space which

is determined up to isomorphism by its dimension, and this allows one to represent all persistent
homology groups by means of a barcode diagram [4]. However, in the integer case one can face
extension problems. In order to solve this difficulty, we introduced in [8] a generalization of
persistent homology with Z-coefficients. This can be done by means of a double filtration which
leads to a new (more general) definition of barcode.

Definition 2.3. Let R be a ring, a spectral sequence E = (Er, dr)r≥1 is a sequence of bi-
graded R-modules Er = {Er

p,q}p,q∈Z, each provided with a differential dr = {drp,q : Er
p,q →

Er
p−r,q+r−1}p,q∈Z of bidegree (−r, r − 1) (satisfying dp−r,q+r−1 ◦ dp,q = 0) and with isomorphisms

H(Er, dr) ∼= Er+1 for every r ≥ 1. Since each Er+1
p,q is a subquotient of Er

p,q, one can define the
final groups E∞p,q of the spectral sequence as the groups which remain after the computation of all
successive homologies.

Theorem 2.4. [7, p.327] Let C be a chain complex with a filtration. There exists a spectral
sequence E ≡ E(C) ≡ (Er, dr)r≥1, defined by

Er
p,q =

Zr
p,q + Cp−1

p+q

dp+q+1(Zr−1
p+r−1,q−r+2) + Cp−1

p+q

where Zr
p,q is the submodule Zr

p,q = {a ∈ Cp
p+q| dp+q(a) ∈ Cp−r

p+q−1} ⊆ Cp
p+q, and drp,q : Er

p,q →
Er

p−r,q+r−1 is the morphism induced on these subquotients by the differential map dp+q : Cp+q →
Cp+q−1. This spectral sequence converges to the homology groups of C, that is, there are natural
isomorphisms

E∞p,q ∼=
Hp

p+q(C)

Hp−1
p+q (C)

where Hp
∗ (C) is the filtration on the homology groups H∗(C) induced by the filtration of C.

3 Computing persistent homology by means of spectral se-
quences

There are some works in the literature which include some comments on the relation between spec-
tral sequences and persistent homology (see for instance [12] and [3]), but the only reference where
we have found an explicit formula which relates them is the book “Computational Topology: An
Introduction” by Herbert Edelsbrunner and John Harer [4]. Given a filtered simplicial complex K,
the so called “Spectral sequence theorem” ([4, p. 171]) claims that:
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The total rank of the groups of dimension p + q in the level r ≥ 1 of the associated
spectral sequence equals the number of points in the (p+q)-th persistence diagram whose
persistence is r or larger, that is,

m∑

p=1

rankEr
p,q = card{a ∈ Dgmp+q(f)|pers(a) ≥ r}

where Dgmp+q(f) is an appropriate persistence diagram (see [4, Chap.VII]) and where
in the left side q decreases as p increases so that the dimension p+ q remains constant.

However, we have detected that the formula in [4] is erroneous because in the spectral sequence
side (the left side) there can be more elements than in the persistence (right) side; the formula
should be therefore an inequality. To illustrate the error in [4], it suffices to consider as a counterex-
ample a simplicial complex K generated by the interval ab, with the filtration given by K1 = {a, b}
and K2 = K; in dimension 1 one has E1

2,−1 = Z but there are no classes of persistence at least 1
since the unique element of dimension 1 is not a cycle.

The correct relation between persistent homology and spectral sequences can be expressed by
the following theorem:

Theorem 3.1. [8] The total rank of the images of the differential maps in the level r ≥ 1 of the
spectral sequence equals the number of points in the (p+q)-th persistence diagram whose persistence
is r:

m∑

p=1

rankAr
p,q = card{a ∈ Dgmp+q(f)|pers(a) = r}

where Ar
p,q = Im(drp+r,q−r+1 : Er

p+r,q−r+1 → Er
p,q) ⊆ Er

p,q.

This theorem gives us an algorithm for computing the rank of the persistent homology groups
of a filtered simplicial complex from the associated spectral sequence. Let us emphasize that this
information about ranks determines (up to isomorphism) the groups Hi,j

n when one works with
coefficients over a field F . Therefore, if we know the groups Er

p,q and the differential maps drp,q
of the spectral sequence of a filtered simplicial complex, thanks to the formula introduced in
Theorem 3.1 we can also easily determine the persistent homology groups of K. If we work
with coefficients over Z, the previous information about the ranks relating spectral sequences and
persistent homology is not sufficient to determine the groups Hi,j

n ; however, we will see later that
one can express the groups Hi,j

n in terms of some subgroups appearing in the definition of the
spectral sequence, which will allow us to determine Hi,j

n also in the integer case.
In a previous work [9], we developed a set of programs computing spectral sequences associated

with filtered chain complexes. These programs were implemented in Common Lisp as a new
module for the Kenzo system [2], a computer algebra program developed by the last author of this
paper and some coworkers which implements the effective homology theory [11] and has made it
possible to determine homology and homotopy groups of complicated (infinite) spaces. The new
programs for spectral sequences use also the effective homology technique and allow the Kenzo user
to determine the different components of spectral sequences of filtered complexes even in some cases
where the chain complex has infinite type. Using our programs, and thanks to Theorem 3.1, one
can determine in this way the ranks of the groups Hi,j

n .
In fact the computation of the groups Hi,j

n can be directly obtained by a small modification
of our algorithms without doing the complete process of computing the corresponding groups and
differential maps of the spectral sequence. Let us recall that a group Er

p,q in the spectral sequence
is given by the formula:

Er
p,q =

Zr
p,q + Cp−1

p+q

dp+q+1(Zr−1
p+r−1,q−r+2) + Cp−1

p+q

We can observe that each class in Er
p,q is generated by an “almost” cycle of dimension p+q (a chain

whose boundary in Kp −Kp−r is empty but which may have non-empty boundary in Kp−r), and
the elements of Er

p,q given by a real cycle x (that is, d(x) = 0), correspond to classes of Hp+q(Kp)
which are born at Kp and are still alive at Kp+r−1, and then the persistence indexes of these
classes are at least r.

It is not difficult to observe then that the groups Hi,j
n can also be described as a quotient:

Hi,j
n =

Ker dn ∩ Ci
n

dn+1(Zj−i
j,n−j+1)

=
Zi
i,n−i

dn+1(Zj−i
j,n−j+1)
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Figure 1: Filtered digital image.

If K is a finite filtered simplicial complex, then our programs determine the different elements of
the associated spectral sequence by means of some elementary operations on matrices. More con-
cretely, the programs determine in particular the subgroups Zr

p,q, Cp−1
p+q and dp+q+1(Zr−1

p+r−1,q−r+2)
which appear in the formula of Theorem 2.4 (which can be determined if K is finite), and then
calculate the desired quotient. The groups Hi,j

n are determined in terms of similar subgroups and
then it has been very easy to adapt our programs in order to compute also Hi,j

n for finite (filtered)
simplicial complexes. It is important to remark that this is also valid in the integer case and this
makes it possible to solve the possible extension problems. Our programs can also be applied in
the infinite case, where the effective homology method can be used to determine the groups Hi,j

n

by means of a reduction of the initial chain complex C to an auxiliary chain complex of finite type
(see [8] for details).

4 Persistent homology of digital images

Given a digital image, we can naturally associate a simplicial complex K and compute its homology
groups in dimensions 0 and 1 which show respectively the number of connected components and
holes that the image contains. If the image is filtered (for example, it comes from a stack of images),
one can also determine the persistent homology groups which will allow us to determine relevant
features, that will be long-lived – in the sense that they persist over a certain parameter range –
on contrast with the “noise” which will be short-lived.

Let us consider the filtered image of Figure 1. The final homology groups are H0 = Z7 and
H1 = Z4. We can see the evolution of the corresponding homology classes along the four filtration
steps by using our programs for computing persistent homology groups based on spectral sequences.
For example, H1,4

0 = Z4, which means that in dimension 0 there are 4 classes which are born at
the first step and are still alive at (the last) step 4:

> (prst-hmlg-group K 1 4 0)

Persistent Homology H^{1,4}_0

Component Z

Component Z

Component Z

Component Z

Similarly, H2,4
1 = Z2 means that there are 2 holes at stage 2 which are still alive at step 4:

> (prst-hmlg-group K 2 4 1)

Persistent Homology H^{2,4}_1

Component Z

Component Z

These same results have been also obtained by a certified program, executed inside the Coq
proof assistant (this kind of verified programs have been developed in the frame of the ForMath
European project [1], and have been documented in [6]).

For bigger digital images, we can reduce the time of calculations by using the combinatorial
notion of Discrete Vector Field, which is an essential component of Forman’s Discrete Morse
Theory [5], adapted to the algebraic setting in [10]. As explained in [10], given a digital image,
an admissible discrete vector field can be constructed by means of some elementary operations on
the differential matrices of the associated chain complex. This vector field produces a reduction
from the initial (big) chain complex to a (much) smaller one whose homology groups are explicitly
isomorphic to the homology groups of the image, so that the computation of these homology groups
can be done in a more efficient way.
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If we are interested in computing persistent homology groups, we can follow a similar process to
construct a discrete vector field and reduce the initial (big) chain complex. In this case the discrete
vector field must be compatible with the filtration, which can be done applying the same elementary
methods of [10] to the differential submatrices corresponding to each step of the filtration. The
vector field so obtained is of course smaller than the non-filtered one, but it usually decreases
significantly the number of generators. This vector field produces again a reduction, which in this
case is compatible with the given filtration, which implies that the persistent homology groups
of the initial image are isomorphic to the persistent homology groups of the reduced one (see [8]
for details). Applying now our programs for computing persistent homology to the small chain
complex, we can compute the persistent homology groups of big images in an efficient way.

Computation of persistent homology groups of digital images could be applied to study finger-
prints. Given a fingerprint image, we could filter it taking at the first step some initial horizontal
lines, adding at each stage of the filtration some additional lines and ending with the whole image.
This filtration would produce some persistent homology groups. A similar process could be done
in the vertical direction, taking successively the columns of the image, producing in that way dif-
ferent persistent homology groups. It seems natural that given two (different) fingerprint images
corresponding to the same person, the so obtained persistent homology groups should be similar.
Persistent homology could help in this way for fingerprint recognition.
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